Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4P
To determine
The probability that the alpha particle could scatter by as much as
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Alpha particles of kinetic energy 6.9M V are incident at a rate of 3.1x 10" per second
on a copper foil of thickness 3.1 x 10-m. A circular detector of diameter 1.0cm is placed 13cm
from the foil at an angle of 30° with the direction of the incident alpha particles. At what rate
does the detector measure scattered alpha particles? (The molar mass of copper is 63.5 and
its density is 8.9em-)
Alpha particles of kinetic energy K are scattered either
from a gold foil or a silver foil of identical thickness. What
is the ratio of the number of particles scattered at angles
greater than 90° by the gold foil to the same number for
the silver foil?
In a Rutherford scattering experiment, assume that an incident alpha particle (radius 1.80 fm) is headed directly toward a target gold nucleus (radius 6.23 fm).What energy must the alpha particle have to just barely “touch” the gold nucleus?
Chapter 4 Solutions
Modern Physics for Scientists and Engineers
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - What fraction of 5-MeV α particles will be...Ch. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Show that if you assume the average nucleus is spherical with a radius r=r0A1/3, and with a mass at A u, then its density is independent at A. (b) Calculate that density in u/fm3 and kg/m3, and compare your results with those found in Example 31.1 for 56Fe.arrow_forwardIn a neutron-activation experiment, a flux of 108 neutrons/cm2sec is incident normally on a foil of area 1 cm?, density 1022 atoms/cm3 , and thickness 10-2 cm. The target nuclei have a total cross section for neutron capture of 1 barn (10-24 cm2), Find the number of b ( the light particle) per second ? 104 particle/sec 102 particle/sec 106 particle/sec 108 particle/sec Clear my choicearrow_forwardQuestion: Calculate and compare the relative ranges of 10 MeV alpha, proton and electron particles moving through an arbitrary substance for which M = 10 and density = 10 g/cc. (Use the Bragg-Kleeman rule also for proton transport in the arbitrary substance).arrow_forward
- What is the likely mass number of a spherical nucleus with a radius of 3.6 fm as measured by electron-scattering methods?arrow_forwardConsider the nuclear fusion reaction 3H+ 'He > 'H + 'He. Part A Compute the binding energy of the H. Express your answer in mega-electron volts to three significant figures. B = MeV Submit Previous Answers Request Answer Part B Compute the binding energy of the He. Express your answer in mega-electron volts to three significant figures. ? B = MeV Submit Previous Answers Request Answer Part C Compute the binding energy of the H. Express your answer in mega-electron volts to three significant figures. ? B = MeV Submit Request Answer Part D Compute the binding energy of the "He. Express your answer in mega-electron volts to three significant figures. B = MeVarrow_forwardquestion 4 pleasearrow_forward
- What fraction of 5-MeV alpha particles will be scattered through an angle greater than 8° from a gold foil (Z=79, density = 19.3 g/cm^3) of thickness of 10^-8m?arrow_forwardQ6. When a slab of material is inserted between a collimated 60Co source and a detector, it is found that the fluxes of 1.17 and 1.33 MeV gamma-rays are reduced, respectively, to 62 and 65% of their values with no absorbers. Calculate the ratio of the attenuation coefficient of the material for the two energies. What would be the reduction in the fluxes if two slabs were used?arrow_forwardIn a Rutherford scattering experiment, an ?-particle (charge = +2e) heads directly toward a silver nucleus (charge = +47e). The ?-particle had a kinetic energy of 4.6 MeV when very far (r → ∞) from the nucleus. Assuming the silver nucleus to be fixed in space, determine the distance of closest approach (in fm). Hint: Use conservation of energy with PE =(keq1q2 / r) _____fmarrow_forward
- A certain medium has the following properties: Σs = 0.1 cm−1,Σa = 0.01 cm−1. a) What is the probability that a neutron will travel 1 cm in this medium without interacting with a nucleus? b) If the neutron speed is 2 ×105 cm s−1, what is the average time between scattering collisions?arrow_forwardQ.9arrow_forwardWhat is beta for a particle with (a) K= 2.00E0 and (b) E= 2.00E0?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning