Student Solutions Manual for Ball's Physical Chemistry, 2nd
2nd Edition
ISBN: 9798214169019
Author: David W. Ball
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.7E
Derive equation
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Draw the stepwise mechanism for the reactions
Part I.
a)
Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone
b) Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone
(3,3-dimethyl-2-butanone) and 2, 3-dimethyl - 1,3-butadiene. Give reasonable mechanism
the formation of
the products
For
3. The explosive decomposition of 2 mole of TNT (2,4,6-trinitrotoluene) is shown below:
Assume the C(s) is soot-basically atomic carbon (although it isn't actually atomic carbon in real life).
2
CH3
H
NO2
NO2
3N2 (g)+7CO (g) + 5H₂O (g) + 7C (s)
H
a. Use bond dissociation energies to calculate how much AU is for this reaction in kJ/mol.
Chapter 4 Solutions
Student Solutions Manual for Ball's Physical Chemistry, 2nd
Ch. 4 - List the sets of conditions that allow dS, dU, and...Ch. 4 - Explain why conditions for using S>0 as a strict...Ch. 4 - Explain how the equation dU+pdVTdS0 is consistent...Ch. 4 - Explain why the spontaneity conditions given in...Ch. 4 - Prove that the adiabatic free expansion of an...Ch. 4 - Derive equation 4.6 from equation 4.5.Ch. 4 - Derive equation 4.8 from equation 4.7.Ch. 4 - The third part of equation 4.9 mentions a...Ch. 4 - Calculate A for a process in which 0.160mole of an...Ch. 4 - What is the maximum amount of non-pV work that can...
Ch. 4 - Consider a piston whose compression ratio is 10:1;...Ch. 4 - When one dives, water pressure increases by 1atm...Ch. 4 - Calculate G(25C) for this chemical reaction, which...Ch. 4 - Thermodynamic properties can also be determined...Ch. 4 - Calculate G in two different ways for the...Ch. 4 - Calculate G in two different ways for the...Ch. 4 - For the reaction C(graphite)C(diamond) at 25C,...Ch. 4 - Determine G for the following reaction at 0C and...Ch. 4 - What is the maximum amount of electrical that is,...Ch. 4 - When a person performs work, it is non-pV work....Ch. 4 - Can non-pV work be obtained from a process for...Ch. 4 - Can pV work be obtained from a process for which...Ch. 4 - Batteries are chemical systems that can be used to...Ch. 4 - The value of G for any phase change at constant p...Ch. 4 - The value of G for any phase change at constant p...Ch. 4 - Under what conditions is A=0 for a phase change?...Ch. 4 - Example 4.2 calculated A for one step of a Carnot...Ch. 4 - Can CV and Cp be easily defined using the natural...Ch. 4 - Analogous to equation 4.26, what is the expression...Ch. 4 - Prob. 4.30ECh. 4 - Prob. 4.31ECh. 4 - Prob. 4.32ECh. 4 - Although ideally, U=H=0 for a gas-phase process at...Ch. 4 - Use equations 4.21 and 4.25 to explain why H and G...Ch. 4 - Prob. 4.35ECh. 4 - Which of the following functions are exact...Ch. 4 - Prob. 4.37ECh. 4 - Prob. 4.38ECh. 4 - Prob. 4.39ECh. 4 - Equation 4.19 says that (UV)S=p If we are...Ch. 4 - For an isentropic process, what is the approximate...Ch. 4 - Use the ideal gas law to demonstrate the cyclic...Ch. 4 - Prob. 4.43ECh. 4 - Prob. 4.44ECh. 4 - Evaluate (U/V)T for an ideal gas. Use the...Ch. 4 - Evaluate (U/V)T for a van der Waals gas. Use the...Ch. 4 - Repeat the previous exercise for a gas that...Ch. 4 - Determine an expression for (p/S)T for an ideal...Ch. 4 - Determine the value of the derivative {[(G)]/T}p...Ch. 4 - Prob. 4.50ECh. 4 - Prob. 4.51ECh. 4 - A 0.988-mole sample of argon expands from 25.0L to...Ch. 4 - A 3.66-mol sample of He contracts from 15.5L to...Ch. 4 - Prob. 4.54ECh. 4 - Prob. 4.55ECh. 4 - Use the Gibbs-Helmholtz equation to demonstrate...Ch. 4 - For the equation 2H2(g)+O2(g)2H2O(g)...Ch. 4 - Use equation 4.46 as an example and find an...Ch. 4 - What is the value of G when 1.00mol of water at...Ch. 4 - Prob. 4.60ECh. 4 - Prob. 4.61ECh. 4 - Prob. 4.62ECh. 4 - Prob. 4.63ECh. 4 - Prob. 4.64ECh. 4 - What is the change in the chemical potential of a...Ch. 4 - Prob. 4.66ECh. 4 - Prob. 4.67ECh. 4 - Prob. 4.68ECh. 4 - Prob. 4.69ECh. 4 - Can equation 4.62 be used to calculate for an...Ch. 4 - Prob. 4.71ECh. 4 - Of helium and oxygen gases, which one do you...Ch. 4 - Prob. 4.73ECh. 4 - Use equation 4.39 to determine a numerical value...Ch. 4 - Prob. 4.75ECh. 4 - Prob. 4.76E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone and (3,3-dimethyl-2-butanone) 2,3-dimethyl-1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forwardShow the mechanism for these reactionsarrow_forwardDraw the stepwise mechanismarrow_forward
- Draw a structural formula of the principal product formed when benzonitrile is treated with each reagent. (a) H₂O (one equivalent), H₂SO₄, heat (b) H₂O (excess), H₂SO₄, heat (c) NaOH, H₂O, heat (d) LiAlH4, then H₂Oarrow_forwardDraw the stepwise mechanism for the reactionsarrow_forwardDraw stepwise mechanismarrow_forward
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: a) Give the major reason for the exposure of benzophenone al isopropyl alcohol (w/acid) to direct sunlight of pina colone Mechanism For b) Pinacol (2,3-dimethy 1, 1-3-butanediol) on treatment w/ acid gives a mixture (3,3-dimethyl-2-butanone) and 2, 3-dimethyl-1,3-butadiene. Give reasonable the formation of the productsarrow_forwardwhat are the Iupac names for each structurearrow_forwardWhat are the IUPAC Names of all the compounds in the picture?arrow_forward
- 1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following compounds. Please show your work. (8) SF2, CH,OH, C₂H₂ b) Based on your answers given above, list the compounds in order of their Boiling Point from low to high. (8)arrow_forward19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+arrow_forwardLi+ is a hard acid. With this in mind, which if the following compounds should be most soluble in water? Group of answer choices LiBr LiI LiF LiClarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College Div
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning

Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax

World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div


Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY