A fisherman sets out upstream on a river. His small boat, powered by an outboard motor, travels at a constant speed v in still water. The water (Urn’s at a lower constant speed v w . The fisherman has traveled upstream for 2.00 km when his ice chest falls out of the boat. He notices that the chest is missing only after he has gone upstream for another 15.0 min. At that point, he turns around and heads back downstream, all the time traveling at the same speed relative to the water. He catches up with the floating ice chest just as he returns to his starting point. How last is the river flowing? Solve this problem in two ways. (a) First, use the Earth as a reference frame. With respect to the Earth, the boat travels upstream at speed v − v w , and downstream at v + v w . (b) A second much simpler and more elegant solution is obtained by using the water as the reference frame. This approach has important applications in many more complicated problems; examples are calculating the motion of rockets and satellites and analyzing the scattering of subatomic particles from massive targets.
A fisherman sets out upstream on a river. His small boat, powered by an outboard motor, travels at a constant speed v in still water. The water (Urn’s at a lower constant speed v w . The fisherman has traveled upstream for 2.00 km when his ice chest falls out of the boat. He notices that the chest is missing only after he has gone upstream for another 15.0 min. At that point, he turns around and heads back downstream, all the time traveling at the same speed relative to the water. He catches up with the floating ice chest just as he returns to his starting point. How last is the river flowing? Solve this problem in two ways. (a) First, use the Earth as a reference frame. With respect to the Earth, the boat travels upstream at speed v − v w , and downstream at v + v w . (b) A second much simpler and more elegant solution is obtained by using the water as the reference frame. This approach has important applications in many more complicated problems; examples are calculating the motion of rockets and satellites and analyzing the scattering of subatomic particles from massive targets.
Solution Summary: The author compares the velocity of the water in the river and the distance covered by boat going upstream.
A fisherman sets out upstream on a river. His small boat, powered by an outboard motor, travels at a constant speed v in still water. The water (Urn’s at a lower constant speed vw. The fisherman has traveled upstream for 2.00 km when his ice chest falls out of the boat. He notices that the chest is missing only after he has gone upstream for another 15.0 min. At that point, he turns around and heads back downstream, all the time traveling at the same speed relative to the water. He catches up with the floating ice chest just as he returns to his starting point. How last is the river flowing? Solve this problem in two ways. (a) First, use the Earth as a reference frame. With respect to the Earth, the boat travels upstream at speed v − vw, and downstream at v + vw. (b) A second much simpler and more elegant solution is obtained by using the water as the reference frame. This approach has important applications in many more complicated problems; examples are calculating the motion of rockets and satellites and analyzing the scattering of subatomic particles from massive targets.
Will you please walk me through the calculations in more detail for solving this problem? I am a bit rusty on calculus and confused about the specific steps of the derivation: https://www.bartleby.com/solution-answer/chapter-3-problem-15e-modern-physics-2nd-edition/9780805303087/7cf8c31d-9476-46d5-a5a9-b897b16fe6fc
please help with the abstract. Abstract - This document outlines the format of the lab report and describes the Excel assignment. The abstract should be a short paragraph that very briefly includes the experiment objective, method, result and conclusion. After skimming the abstract, the reader should be able to decide whether they want to keep reading your work. Both the format of the report and the error analysis are to be followed. Note that abstract is not just the introduction and conclusion combined, but rather the whole experiment in short including the results. I have attacted the theory.
Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2
Chapter 4 Solutions
Bundle: Physics for Scientists and Engineers, Technology Update, 9th Loose-leaf Version + WebAssign Printed Access Card, Multi-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.