An aging coyote cannot run fast enough to catch a road-runner. He purchases on eBay a set of jet-powered roller skates, which provide a constant horizontal acceleration of 15.0 m/s 2 (Fig. P1.78). The coyote starts at rest 70.0 in from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff, (a) Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. At the edge of the cliff', the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight, so his acceleration while in the air ss (15.0 - 9.80 j → ) m/s 2 , (b) The cliff is 100 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands, (c) Determine the components of the coyote’s impact velocity.
An aging coyote cannot run fast enough to catch a road-runner. He purchases on eBay a set of jet-powered roller skates, which provide a constant horizontal acceleration of 15.0 m/s 2 (Fig. P1.78). The coyote starts at rest 70.0 in from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff, (a) Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. At the edge of the cliff', the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight, so his acceleration while in the air ss (15.0 - 9.80 j → ) m/s 2 , (b) The cliff is 100 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands, (c) Determine the components of the coyote’s impact velocity.
Solution Summary: The author determines the minimum constant speed required by the roadrunner to reach the cliff before the coyote.
An aging coyote cannot run fast enough to catch a road-runner. He purchases on eBay a set of jet-powered roller skates, which provide a constant horizontal acceleration of 15.0 m/s2 (Fig. P1.78). The coyote starts at rest 70.0 in from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff, (a) Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. At the edge of the cliff', the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight, so his acceleration while in the air ss (15.0 - 9.80
j
→
) m/s2, (b) The cliff is 100 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands, (c) Determine the components of the coyote’s impact velocity.
2. A football is kicked at an angle 37.0° above
the horizontal with a velocity of 20.0 m/s, as
Calculate (a) the maximum height, (b) the
time of travel before the football hits the
ground, and (c) how far away it hits the
ground. Assume the ball leaves the foot at
ground level, and ignore air resistance, wind,
and rotation of the ball.
Please don't use Chatgpt will upvote and give handwritten solution
Cam mechanisms are used in many machines. For example, cams open and close the valves in your car engine to admit gasoline vapor to each cylinder and to allow the escape of exhaust.
The principle is illustrated in the figure below, showing a follower rod (also called a pushrod) of mass m resting on a wedge of mass M. The sliding wedge duplicates the function of a
rotating eccentric disk on a camshaft in your car. Assume that there is no friction between the wedge and the base, between the pushrod and the wedge, or between the rod and the guide
through which it slides. When the wedge is pushed to the left by the force F, the rod moves upward and does something such as opening a valve. By varying the shape of the wedge, the
motion of the follower rod could be made quite complex, but assume that the wedge makes a constant angle of 0 = 15.0°. Suppose you want the wedge and the rod to start from rest and
move with constant acceleration, with the rod moving upward 1.00 mm in 8.00 ms. Take m…
Chapter 4 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.