Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.76AP
A truck loaded with cannonball watermelons stops suddenly to avoid running over the edge of a washed-out bridge (Fig. P4.76). The quick stop causes a number of melons to fly off the truck. One melon leaves the hood of the truck with an initial speed υi, = 10.0 m/s in the horizontal direction. A cross section of the bank has the shape of the bottom half of a parabola, with its vertex at the initial location of the projected watermelon and with the equation y2= 16x, where x and y are mea-
sured in meters What are the x and y coordinates of the melon when it splatters on the bank?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A pendulum with a cord of length r = 1.00 m swings in a vertical plane (Fig. P4.42). When the pendulum is in the two horizontal positions θ = 90.0° and θ = 270°, its speed is 5.00 m/s. Find the magnitude of (a) the radial acceleration and (b) the tangential acceleration for these positions. (c) Draw vector diagrams to determine the direction of the total acceleration for these two positions. (d) Calculate the magnitude and direction of the total acceleration at these two positions.
Solve all parts , i vll upvote ,
Asap plzzz
Consider a projectile on Earth, where +z is vertically upward. A cannon that is 1.50 m tall sits on the edge of a 50.0 m tall cliff oriented to fire in the +x direction. The cannon fires a 6.50 kg cannonball with an initial velocity of 110 m/s at an angle of 55° above the horizontal. Neglect air resistance.
a) Write the acceleration of the cannon ball as a function of time as a column vector.
b. write the canon ball's velocity as a function of time as a column vector
c. write the canon ball's position as a function of time as a column vector
d. how long does it take the canon ball to reach the highest point in it's trajectory
e. what is the peak height the cannon ball attains
pls provide answers in handwritten manner
Chapter 4 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 4 - Consider the following controls in an automobile...Ch. 4 - (i) As a projectile thrown at an upward angle...Ch. 4 - Rank the launch angles for the five paths in...Ch. 4 - A particle moves in a circular path of radius r...Ch. 4 - A particle moves along a path, and its speed...Ch. 4 - Figure OQ4.1 shows a bird's-eye view of a car...Ch. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - A girl, moving at 8 m/s on in-line skates, is...Ch. 4 - A sailor drops a wrench front the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - Prob. 4.11OQCh. 4 - Prob. 4.12OQCh. 4 - In which of the following situations is the moving...Ch. 4 - Prob. 4.1CQCh. 4 - Ail ice skater is executing a figure eight,...Ch. 4 - If you know the position vectors of a particle at...Ch. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - Prob. 4.5CQCh. 4 - Prob. 4.6CQCh. 4 - Explain whether or not the following particles...Ch. 4 - A motorist drives south at 20.0 m/s for 3.00 min,...Ch. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - A golf ball is hit off a tee at the edge of a...Ch. 4 - A particle initially located at the origin has an...Ch. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - A fish swimming in a horizontal plane has velocity...Ch. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - An astronaut on a strange planet finds that she...Ch. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - In a local bar. a customer slides an empty beer...Ch. 4 - A projectile is fired in such a way that its...Ch. 4 - To start an avalanche on a mountain slope, an...Ch. 4 - Chinook salmon are able to move through water...Ch. 4 - A rock is thrown upward from level ground in such...Ch. 4 - The speed of a projectile when it reaches its...Ch. 4 - A ball is tossed from an upper-story window of a...Ch. 4 - A firefighter, a distance d from a burning...Ch. 4 - A landscape architect is planning an artificial...Ch. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - The motion of a human body through space can be...Ch. 4 - A soccer player kicks a rock horizontally off a...Ch. 4 - A projectile is fired from the top of a cliff of...Ch. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - The record distance in the sport of throwing...Ch. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Casting molten metal is important in many...Ch. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Section 4.5 Tangential and Radial Acceleration...Ch. 4 - A train slows down as it rounds a sharp horizontal...Ch. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - An airplane maintains a speed of 630 km/h relative...Ch. 4 - A moving beltway at an airport has a speed 1 and a...Ch. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - A bolt drops from the ceiling of a moving train...Ch. 4 - A river has a steady speed of 0.500 m/s. A student...Ch. 4 - A river flows with a steady speed v. A student...Ch. 4 - A Coast Guard cutter detects an unidentified ship...Ch. 4 - A science student is riding on a flatcar of a...Ch. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - A ball is thrown with an initial speed i at an...Ch. 4 - Why is the following situation impassible? A...Ch. 4 - A particle starts from the origin with velocity...Ch. 4 - The Vomit Comet. In microgravity astronaut...Ch. 4 - A basketball player is standing on the floor 10.0...Ch. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - A flea is at point on a horizontal turntable,...Ch. 4 - Towns A and B in Figure P4.64 are 80.0 km apart. A...Ch. 4 - A catapult launches a rocket at an angle of 53.0...Ch. 4 - A cannon with a muzzle speed of 1 000 m/s is used...Ch. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - An astronaut on the surface of the Moon fires a...Ch. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - A hawk is flying horizontally at 10.0 m/s in a...Ch. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - A truck loaded with cannonball watermelons stops...Ch. 4 - A car is parked on a steep incline, making an...Ch. 4 - An aging coyote cannot run fast enough to catch a...Ch. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Do not hurt yourself; do not strike your hand...Ch. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - The water in a river flows uniformly at a constant...Ch. 4 - A person standing at the top of a hemispherical...Ch. 4 - A dive-bomber has a velocity or 280 m/s at ail...Ch. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - An enemy ship is on the east side of a mountain...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The length of the arc is 250 meters, and the time to turn is 37 seconds. Calculate the x-component of the acceleration (in m/s2) at point B, where the angle is 69°. 3. A car initially traveling v eastward turns north by traveling in a circular path at uniform speed as shown in Figure P6.3. The length of the arc ABC is 235 m, and the B) y Calculate the average speed in m/s. The numbers: • Length of the arc: 219 meters • Time to turn: 49 seconds 35.0° C В car completes the turn in 36.0 s. Now calculate the y-component of the average acceleration. The book itself is 6) unclear whether what's asked for is the average of the vector, the magnitude of A the vector average, or the average of the magnitude. But the answer at the back of the book indicates the vector. Figure P6.3 • Length of the arc: 227 meters • Time to turn: 46 secondsarrow_forwardHole number 7 at Pebble Beach golf course is one of the shortest championship holes in the world. The hole is only 100m away from the tee, and it is also 12m lower. Champion golfer Shooter McGavin hits a 9-iron at an angle of 50◦ with respect to the horizontal, and lands the ball right in the hole. Assume there is no wind or air resistance, and g = 9.8 m/s^2. (sin 50◦ = 0.766, cos 50◦ = 0.643, tan 50◦ = 1.19, sin 45◦ = 0.707, cos 45◦ = 0.707, tan 45◦ = 1.00). What is the initial velocity of the ball? How long was the ball in the air? What was the maximum height? If Shooter had misjudged the hole, and hit the ball with the same velocity but at an angle of 45◦ instead, by how much would he have overshot the hole?arrow_forwardThe aorta is a major artery, rising upward from the left ventricle of the heart and curving down to carry blood to the abdomen and lower half of the body. The curved artery can be approximated as a semicircular arch whose diameter is 4.3 cm. If blood flows through the aortic arch at a speed of 0.37 m/s, what is the magnitude (in m/s²) of the blood's centripetal acceleration?arrow_forward
- For a forensics experiment, a student decides to measure the muzzle velocity of the pellets from his BB gun. She points the gun horizontally. On a vertical wall a distance 47.3 m away from the gun, a target is placed. The shots hit the target a vertical distance 0.10 m below the gun's barrel. What is the initial speed of the pellets? Your Answer: units Answerarrow_forwardUse g = 10 m/s/s.arrow_forwardA car initially travelingeastward turns north by travelingin a circular path atuniform speed as shown inFigure P7.15. The length of the arc ABC is 235 m, and the car completes the turn in 36.0 s.(a) Determine the car’s speed. (b) What is the magnitude anddirection of the acceleration when the car is at point B?arrow_forward
- You are asked to design an airplane propeller to turn at 2400 rpm. The forward air speed of the plane is to be 75 m/s and the speed of the tips of the propeller blades must not exceed 270 m/s. a) What is the maximum radius the propeller can have? b) With this radius, what is the acceleration of the propeller tip?arrow_forwardAt its Ames Research Center, NASA uses its large “20 G” centrifuge to test the effects of very large accelerations (“hypergravity”) on test pilots and astronauts. In this device, an arm 8.84 m long rotates about one end in a horizontal plane, and an astronaut is strapped in at the other end. Suppose that he is aligned along the centrifuge’s arm with his head at the outermost end. The maximum sustained acceleration to which humans are subjected in this device is typically 12.5g. (a) How fast must the astronaut’s head be moving to experience this maximum acceleration? (b) What is the difference between the acceleration of his head and feet if the astronaut is 2.00 m tall? (c) How fast in rpm 1rev>min2 is the arm turning to produce the maximum sustained acceleration?arrow_forwardRex Marksley is determined to prove himself the greatest marksman in the West with one stunt. In a duel with his most recent enemy, he fires a shot directly into the barrel of his opponent's pistol. The bullet lodges itself into the pistol, and the opponent reflexively lets go of the pistol in that instant. The bullet had entered the barrel with a speed 310 m/s traveling horizontally and the pistol was held at a height of 1.5 m. If the bullet had a mass 30.0 g and the pistol a mass 1.00 kg , what horizontal distance did the pistol travel before hitting the ground? Part A O 6.62 m O 7.65 m O 3.05 m O 5.00 m O 3.86 m O 2.10 marrow_forward
- Please Asaparrow_forwardWith explenation please.arrow_forwardA student sits atop a platform a distance h above the ground. He throws a large firecracker horizontally with a speed v. However, a wind blowing parallel to the ground gives the firecracker a constant horizontal acceleration with magnitude a. As a result, the firecracker reaches the ground directly below the student. Determine the height h in terms of v, a, and g. Ignore the effect of air resistance on the vertical motion.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY