Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.6CQ
(a)
To determine
The motion diagram for velocity and acceleration of a projectile at several points along its path when the projectile is launched horizontally.
(b)
To determine
The motion diagram for velocity and acceleration of a projectile at several points along its path when the projectile is launched at an angle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As a projectile moves in its parabolic path, where are the velocity and acceleration vectors perpendicular to each other? (a) Everywhere along the projectile’s path, (b) at the peak of its path, (c) nowhere along its path, or (d) not enough information is given.
The trajectory of a projectile launched from ground is given by the equationy = -0.035 x2 + 0.75 x, where x and y are the coordinate of the projectile on arectangular system of axes. Find the initial velocity and the angle at which theprojectile is launched.
A football player punts the ball at a 45 angle. Without an effect from the wind, the ball would travel 60.0 m horizontally. (a) What is the initial speed of the ball? (b) When the ball is near its maximum height it experiences a brief gust of wind that reduces its horizontal velocity by 1.50 m/s. What distance does the ball travel horizontally?
Chapter 4 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 4 - Consider the following controls in an automobile...Ch. 4 - (i) As a projectile thrown at an upward angle...Ch. 4 - Rank the launch angles for the five paths in...Ch. 4 - A particle moves in a circular path of radius r...Ch. 4 - A particle moves along a path, and its speed...Ch. 4 - Figure OQ4.1 shows a bird's-eye view of a car...Ch. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - A girl, moving at 8 m/s on in-line skates, is...Ch. 4 - A sailor drops a wrench front the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - Prob. 4.11OQCh. 4 - Prob. 4.12OQCh. 4 - In which of the following situations is the moving...Ch. 4 - Prob. 4.1CQCh. 4 - Ail ice skater is executing a figure eight,...Ch. 4 - If you know the position vectors of a particle at...Ch. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - Prob. 4.5CQCh. 4 - Prob. 4.6CQCh. 4 - Explain whether or not the following particles...Ch. 4 - A motorist drives south at 20.0 m/s for 3.00 min,...Ch. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - A golf ball is hit off a tee at the edge of a...Ch. 4 - A particle initially located at the origin has an...Ch. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - A fish swimming in a horizontal plane has velocity...Ch. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - An astronaut on a strange planet finds that she...Ch. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - In a local bar. a customer slides an empty beer...Ch. 4 - A projectile is fired in such a way that its...Ch. 4 - To start an avalanche on a mountain slope, an...Ch. 4 - Chinook salmon are able to move through water...Ch. 4 - A rock is thrown upward from level ground in such...Ch. 4 - The speed of a projectile when it reaches its...Ch. 4 - A ball is tossed from an upper-story window of a...Ch. 4 - A firefighter, a distance d from a burning...Ch. 4 - A landscape architect is planning an artificial...Ch. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - The motion of a human body through space can be...Ch. 4 - A soccer player kicks a rock horizontally off a...Ch. 4 - A projectile is fired from the top of a cliff of...Ch. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - The record distance in the sport of throwing...Ch. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Casting molten metal is important in many...Ch. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Section 4.5 Tangential and Radial Acceleration...Ch. 4 - A train slows down as it rounds a sharp horizontal...Ch. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - An airplane maintains a speed of 630 km/h relative...Ch. 4 - A moving beltway at an airport has a speed 1 and a...Ch. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - A bolt drops from the ceiling of a moving train...Ch. 4 - A river has a steady speed of 0.500 m/s. A student...Ch. 4 - A river flows with a steady speed v. A student...Ch. 4 - A Coast Guard cutter detects an unidentified ship...Ch. 4 - A science student is riding on a flatcar of a...Ch. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - A ball is thrown with an initial speed i at an...Ch. 4 - Why is the following situation impassible? A...Ch. 4 - A particle starts from the origin with velocity...Ch. 4 - The Vomit Comet. In microgravity astronaut...Ch. 4 - A basketball player is standing on the floor 10.0...Ch. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - A flea is at point on a horizontal turntable,...Ch. 4 - Towns A and B in Figure P4.64 are 80.0 km apart. A...Ch. 4 - A catapult launches a rocket at an angle of 53.0...Ch. 4 - A cannon with a muzzle speed of 1 000 m/s is used...Ch. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - An astronaut on the surface of the Moon fires a...Ch. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - A hawk is flying horizontally at 10.0 m/s in a...Ch. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - A truck loaded with cannonball watermelons stops...Ch. 4 - A car is parked on a steep incline, making an...Ch. 4 - An aging coyote cannot run fast enough to catch a...Ch. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Do not hurt yourself; do not strike your hand...Ch. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - The water in a river flows uniformly at a constant...Ch. 4 - A person standing at the top of a hemispherical...Ch. 4 - A dive-bomber has a velocity or 280 m/s at ail...Ch. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - An enemy ship is on the east side of a mountain...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A projectile is launched with an initial speed of 30 m/s at an angle of 60° above the horizontal.What are the (a) magnitude and (b) angle of its velocity 2.0 s after launch, and (c) is the angle above or below the horizontal? What are the (d) magnitude and (e) angle of its velocity 5.0 s after launch, and (f) is the angle above or below the horizontal?arrow_forwardA projectile is launched from ground level at an angle θ to the top of a cliff which is 195 m away and 155 m high. If the projectile lands right on the cliff edge 7.6 s after it is fired, find the initial velocity of the projectile.arrow_forwardNow let's consider a projectile problem in which the initial velocity is specified in terms of a magnitude and an angle. Suppose a home-run baseball is hit with an initial speed vo= 37.0 m/s at an initial angle 80 53.1° (a) Find the ball's position, and the magnitude and direction of its velocity, when t = 2.00 s. (b) Find the time the ball reaches the highest point of its flight, and find its height h at that point. (c) Find the horizontal range R (the horizontal distance from the starting point to the point where the ball hits the ground). Compute the y-component of the ball's position 8.10 s after the start of its flight. Express your answer in meters. [5] ΑΣΦ/Φ 44.67 Submit ? Previous Answers Request Answer X Incorrect; Try Again; 2 attempts remaining marrow_forward
- A trebuchet (a catapult) is used to launch a fiery projectile towards a castle. The projectile is 5.0 m above the ground when launched at a velocity of 25 m/s at an angle of 35° above the horizontal. Assuming that the projectile lands on the level ground inside the castle walls answer the following questions. (a) How long was the projectile in the air? (b) How far horizontally did the projectile travel from where it was launched to where it hit the ground? (c) What was the velocity of the projectile just before it hit the ground? (d) Include aarrow_forwardA quarterback practices his throwing motion by throwing on the practice field, but misses the target. The ball is thrown with an initial speed of 13.24[m/s] at an angle of 35.0°. If the ball is released when it is 1.85[m] above the ground, determine the magnitude of the velocity of the ball the instant before it lands. Express your answer in m/s.arrow_forwardIn the figure, a ball is launched with a velocity of magnitude 7.00 m/s, at an angle of 41.0° to the horizontal. The launch point is at the base of a ramp of horizontal length d1 = 6.00 m and height d2 = 3.60 m. A plateau is located at the top of the ramp. Does the ball land on the ramp or the plateau? When it lands, what are the magnitude and angle of its displacement from the launch point?arrow_forward
- A projectile is fired with an initial speed of 75.2 m/s at angle of 37.5 degrees above the horizontal on a long flat firing range. Determine (1) the maximum vertical distance reached by the projectile, (2) the total time in the air, (3) the range of the projectile, (4) the velocity of the projectile 2.75 s after firing.arrow_forwardA projectile is fired upward at an angle theta above the horizontal with an initial speed v0. At its maximum height, what are its velocity vector, its speed, and its acceleration vector?arrow_forwardA baseball player hits a home run, and the ball lands in the left-field seats, y = 7.70 m above the point at which it was hit. It lands with a velocity of v = 35.0 m/s at an angle of 28° below the horizontal (see the Figure). The positive directions are upward and to the right in the drawing. Ignorin air resistance, find (a) the magnitude and (b) the direction of the initial velocity with which the ball leaves the bat. +y voy 28° y=7.70m VOI v 35.0m/sarrow_forward
- A projectile is launched from a height H above the ground with speed V0 at an angle ao above the horizontal. In this problem, use a coordinate system where +y direction is upward. the+x direction is along the horizontal and to the right, and the x-coordinate of the projectile is initially zero. In this example, the maximum height reached by the projectile and the range of a projectile was calculated for a projectile launched from a height H above the ground and at an angle ao above the horizontal line. Calculate the time of flight, range, R, and maximum height, yMAX, reached by the projectile for the following special cases: a) Case 1: The projectile launched from the ground (H=0) b) Case 2: The projectile is launched horizontally (ao = 0)arrow_forwardA golfer tees off from the top of a rise, giving the golf ball an initial velocity of 43.0 m/s at an angle of 30.0° above the horizontal. The ball strikes the fairway a horizontal distance of 180 m from the tee. Assume the fairway is level. (a) How high is the rise above the fairway? (b) What is the speed of the ball as it strikes the fairway?arrow_forwarda projectile is fired with an initial speed of 36.6 m/s at an angle of 42.2° above the horizontal on a long flat firing range.Determine (a) the maximum height reached by the projectile, (b) the total time in the air, (c) the range, and the (d) the speed of the projectile 1.50 s after firingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY