Concept explainers
A projectile is launched from the point (x = 0, y = 0), with velocity
(a)
The values of the projectile distance
Answer to Problem 4.72AP
The table for the values of
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
Explanation of Solution
The initial position of the projectile is
The value of the acceleration due to gravity is
Write the formula to calculate the
Here,
In a vertical projectile the acceleration in
Substitute
Thus, the
Write the formula to calculate the
Here,
For the vertical projectile the acceleration in
Substitute
Thus, the
Write the formula to calculate the magnitude of the position vector
Substitute
For
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
Conclusion:
Therefore, the table for the values of
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
(b)
The distance is maximum when the position vector is perpendicular to the velocity.
Answer to Problem 4.72AP
The distance is maximum when the position vector is perpendicular to the velocity.
Explanation of Solution
The initial position of the projectile is
The velocity vector tells about the change in the position vector. If the velocity vector at particular point has a component along the position vector and the velocity vector makes an angle less than
For the position vector to be maximum the distance from the origin must be momentarily at rest or constant and the only possible situation for this is that the velocity vector makes an angle
Conclusion:
Therefore, the distance is maximum when the position vector is perpendicular to the velocity vector.
(c)
The magnitude of the maximum displacement.
Answer to Problem 4.72AP
The magnitude of the maximum displacement is
Explanation of Solution
The initial position of the projectile is
The expression for the position vector
Square both the sides of the above equation.
Differentiate the above expression with respect to
For the maxima condition to calculate the value the value of
Further solve the above expression for
Further solving the above quadratic equation the values of
From the table in Part (a) it is evident that after
Thus, the maximum value of
Substitute
Conclusion:
Therefore, the maximum distance is
(d)
The explanation for the method used in part (c) calculation.
Answer to Problem 4.72AP
The maxima and minima condition is used to calculate the maximum magnitude of the position vector.
Explanation of Solution
The initial position of the projectile is
The maximum or minimum value of any function is easily calculated using the Maxima and Minima condition.
For the part (c) first calculate the critical points by equating the differential of
The value of
Substitute the maximum value of
Conclusion:
Therefore, the maxima and minima condition is used to calculate the maximum magnitude of the position vector.
Want to see more full solutions like this?
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Please help me with this physics problemarrow_forwardIn a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forward
- No chatgpt pls will upvote Alreadyarrow_forwardTwo objects get pushed by the same magnitude of force. One object is 10x more massive. How does the rate of change of momentum for the more massive object compare with the less massive one? Please be able to explain why in terms of a quantitative statement found in the chapter.arrow_forwardA box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning