Fundamentals Of Engineering Thermodynamics, 9e
9th Edition
ISBN: 9781119391432
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.66P
To determine
The change in kinetic energy per unit mass of water flowing through the valve.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water contained in a closed, rigid tank, initially at 100 lb/in², 800°F, is cooled to a final state where the pressure is 25 lb/in².
Determine the quality at the final state and the change in specific entropy, in Btu/lb-ºR, for the process.
Consider a piston-cylinder assembly containing 10.0 kg of water. Initially, the gas has a pressure of 20.0 bar and occupies a volume of 1.0 m3. The system undergoes a reversible process in which it is compressed to 100 bar. The pressure volume relationship during this process is given by: PV1.5 = constant.
(a) What is the initial temperature?
(b) Calculate the work done during this process.
(c) Calculate the heat transferred during this process. (d) What is the final temperature?
A container of 1.5 Kg of gas is at a temperature and pressure of 293 K and 1 bar respectively. The gas is adiabatically compressed until its temperature and pressure are 450 K, 4.49 bars. Adiabatic processes are processes with no heat transfer. The properties of this gas are cv = 10.3 KJ/(Kg K) and R = 4.158 KJ/(Kg K). Neglect kinetic and potential energy terms.
Use the first law to determine the work into the system.
Calculate the entropy production for this process.
Is this a reversible process?
Chapter 4 Solutions
Fundamentals Of Engineering Thermodynamics, 9e
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerant 134a at p1 = 30 lbş/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 250 lb/h and exits as saturated vapor at p2 = 160 lbę/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 2.5 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr-°R.arrow_forwardRefrigerant 134a at p₁ = 30 lb/in², T₁ = 40°F enters a compressor operating at steady state with a mass flow rate of 150 lb/h and exits as saturated vapor at p2 = 160 lb/in². Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 1.5 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr.°R.arrow_forward1 kg of water, T1 = 300 ° C, P1 = 200 kPa in a piston-cylinder assembly passes a process to its final state at constant pressure T2 = 150 ° C by throwing heat from its initial state to the surrounding environment. At the end of this process, determine(a) Piston boundary work, (b) The amount of heat discharged from the piston to the surrounding environment, (c) The amount of entropy produced by the piston cylinder (d) The amount of entropy produced by the surrounding environment. (Take the piston cylinder surface temperature 150 ° C!)arrow_forward
- 1 kg of water, T1 = 300 ° C, P1 = 200 kPa in a piston-cylinder assembly passes a process to its final state at constant pressure T2 = 150 ° C by throwing heat from its initial state to the surrounding environment. At the end of this process, determine (a) Piston boundary work, (b) The amount of heat discharged from the piston to the surrounding environment, (c) The amount of entropy produced by the piston cylinder (d) The amount of entropy produced by the surrounding environment. (Take the piston cylinder surface temperature 150 ° C!) witer ! ambient enviroņment 1 kgarrow_forwardA boiler is used to generate steam. Water enters the boiler, saturated at 60°C at an unknown flow rate. Superheated steam exits at 10 bar and 262°C. The energy input of the boiler is 420 KW. Determine the flow rate of water through the boiler, in kg/hr. Neglect kinetic and potential energy changes.arrow_forwardT-9arrow_forward
- T-9arrow_forwardRefrigerant 134a at p1 = 30 lbe/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 400 Ib/h and exits as saturated vapor at p2 = 160 Ib/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 4 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr.°R.arrow_forward2- 1 kg of water in a piston-cylinder assembly, T1 = 300 ° C, P1 = 200 kPa, passes a process to its final state at constant pressure T2 = 150 ° C by throwing heat from its initial state to the surrounding environment. At the end of this process, determine (a) Piston boundary work, (b) The amount of heat discharged from the piston to the surrounding environment, (c) The amount of entropy produced by the piston cylinder (d) The amount of entropy produced by the surrounding environment. (Take the piston cylinder surface temperature 150 ° C!)arrow_forward
- A fluid at pressure of 3 bar, and with specific volume 0.18 m^3/kg, contained in a cyclinder behind a piston that expands reversibly to a pressure of 0.6 bar according to a law: p= C/v², where c is a constant. Show the expansion process on p-V diagram and calculate the net work done by the fluid on the piston.arrow_forwardAvailable energy of the air streamarrow_forward300 tones per second of steam is expanded in a turbine from an initial pressure of 93 bar. The specific enthalpies of steam at inlet and exit of the turbine are respectively 3500 kJ/kg and 2400 kJ/kg. Neglecting potential energy and kinetic energy terms and loss due to heat transfer, determine the output of the turbine in MWarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license