The number of moles of H + ions that are present in 1.4 mL of 0.75 M hydrobromic acid is to be calculated. Concept introduction: Acid is a substance that dissociates in water to release H + ions. Depending upon the strength the acids can be classified into two types: 1. Strong acids 2. Weak acids Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions. They behave as strong electrolytes and conduct a large amount of electricity. Weak acids are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions. They behave as weak electrolytes and conduct less amount of electricity.
The number of moles of H + ions that are present in 1.4 mL of 0.75 M hydrobromic acid is to be calculated. Concept introduction: Acid is a substance that dissociates in water to release H + ions. Depending upon the strength the acids can be classified into two types: 1. Strong acids 2. Weak acids Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions. They behave as strong electrolytes and conduct a large amount of electricity. Weak acids are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions. They behave as weak electrolytes and conduct less amount of electricity.
The number of moles of H+ ions that are present in 1.4 mL of 0.75M hydrobromic acid is to be calculated.
Concept introduction:
Acid is a substance that dissociates in water to release H+ ions. Depending upon the strength the acids can be classified into two types:
1. Strong acids
2. Weak acids
Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions. They behave as strong electrolytes and conduct a large amount of electricity.
Weak acids are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions. They behave as weak electrolytes and conduct less amount of electricity.
(b)
Interpretation Introduction
Interpretation:
The moles of H+ ions that are present in 2.47mL of 1.98M hydriodic acid is to be calculated.
Concept introduction:
Acid is a substance that dissociates in water to release H+ ions. Depending upon the strength the acids can be classified into two types:
1. Strong acids
2. Weak acids
Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions. They behave as strong electrolytes and conduct a large amount of electricity.
Weak acids are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions. They behave as weak electrolytes and conduct less amount of electricity.
(c)
Interpretation Introduction
Interpretation:
The moles of H+ ions that are present in 395 mL of 0.270M nitric acid is to be calculated.
Concept introduction:
Acid is a substance that dissociates in water to release H+ ions. Depending upon the strength the acids can be classified into two types:
1. Strong acids
2. Weak acids
Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions. They behave as strong electrolytes and conduct a large amount of electricity.
Weak acids are the substance that does not dissociates completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions. They behave as weak electrolytes and conduct less amount of electricity.
Identify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.
Instructions: Complete the questions in the space provided. Show all your work
1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure
the initial reaction rate and the starting concentrations of the reactions for 4 trials.
BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l)
Initial rate
Trial
[BrO3]
[H*]
[Br]
(mol/L)
(mol/L) | (mol/L)
(mol/L.s)
1
0.10
0.10
0.10
8.0
2
0.20
0.10
0.10
16
3
0.10
0.20
0.10
16
4
0.10
0.10
0.20
32
a.
Based on the above data what is the rate law expression?
b. Solve for the value of k (make sure to include proper units)
2. The proposed reaction mechanism is as follows:
i.
ii.
BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq)
HBrO³ (aq) + H* (aq) → H₂BrO3* (aq)
iii.
H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l)
[Fast]
[Medium]
[Slow]
iv.
Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l)
[Fast]
Evaluate the validity of this proposed reaction. Justify your answer.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.