The number of moles and number of ions of each type in 130 mL of 0.45 M aluminium chloride is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows: Moles of compound ( mol ) = [ volume of solution ( L ) ( molarity of solution ( mol ) 1L of solution ) ] The expression to calculate the moles of ions is as follows: moles of ion of compound ( mol ) = [ ( moles of compound ( mol ) ) ( total moles of ion ( mol ) 1 mole of compound ) ] The expression to calculate the number of ions is as follows: number of ions = ( moles of ions ( mol ) ) ( 6 .022 × 10 23 ions 1 mole of ions )
The number of moles and number of ions of each type in 130 mL of 0.45 M aluminium chloride is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows: Moles of compound ( mol ) = [ volume of solution ( L ) ( molarity of solution ( mol ) 1L of solution ) ] The expression to calculate the moles of ions is as follows: moles of ion of compound ( mol ) = [ ( moles of compound ( mol ) ) ( total moles of ion ( mol ) 1 mole of compound ) ] The expression to calculate the number of ions is as follows: number of ions = ( moles of ions ( mol ) ) ( 6 .022 × 10 23 ions 1 mole of ions )
The number of moles and number of ions of each type in 130 mL of 0.45M aluminium chloride is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows:
Moles of compound(mol)=[volume of solution(L)(molarityofsolution(mol)1L of solution)]
The expression to calculate the moles of ions is as follows:
moles ofion of compound(mol)=[(moles of compound(mol))(total moles of ion(mol)1mole of compound)]
The expression to calculate the number of ions is as follows:
numberof ions=(moles of ions(mol))(6.022×1023ions1mole of ions)
(b)
Interpretation Introduction
Interpretation:
The number of moles and number of ions of each type in 9.80 mL of a solution containing 2.59 g lithium sulphate per litre is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows:
Moles of compound(mol)=[given massof compound(g)(1moleof compound(mol)molecular mass of compound(g))]
The expression to calculate the moles of ions is as follows:
moles ofion of compound(mol)=[(moles of compound(mol))(total moles of ion(mol)1mole of compound)]
The expression to calculate the number of ions is as follows:
numberof ions=(moles of ions(mol))(6.022×1023ions1mole of ions)
(c)
Interpretation Introduction
Interpretation:
The number of moles and number of ions of each type in 245 mL of a solution containing 3.68×1022 formula units of potassium bromide per liter is to be calculated.
Concept introduction:
A formula unit is used for the ionic compound to represent their empirical formula. The expression to calculate the moles of a compound when the volume of solution and formula unit of a compound is given is as follows:
moles of a compound(mol)=[(volume of solution(L))(given formula unit of compound(FU))(1 mole of compound6.022×1023FU)]
The expression to calculate the moles of ions is as follows:
moles ofion of compound(mol)=[(moles of compound(mol))(total moles of ion(mol)1mole of compound)]
The expression to calculate the number of ions is as follows:
numberof ions=(moles of ions(mol))(6.022×1023ions1mole of ions)
1/2
-
51%
+ »
GAY
Organic Reactions Assignment
/26
Write the type of reaction that is occurring on the line provided then complete the reaction. Only include the
major products and any byproducts (e.g. H₂O) but no minor products. Please use either full structural
diagrams or the combination method shown in the lesson. Skeletal/line diagrams will not be accepted.
H3C
1.
2.
CH3
A
Acid
OH
Type of Reaction:
NH
Type of Reaction:
+ H₂O
Catalyst
+ HBr
3.
Type of Reaction:
H3C
4.
Type Reaction:
5. H3C
CH2 + H2O
OH
+
[0]
CH3
Type of Reaction:
6. OH
CH3
HO
CH3 +
Type of Reaction:
7.
Type of Reaction:
+ [H]
humbnai
Concentration Terms[1].pdf ox + New
Home
Edit
Sign in
Comment
Convert
Page
Fill & Sign
Protect
Tools
Batch
+WPS A
Free Trial
Share
Inter Concreting Concentration forms.
Hydrogen peroxide is
a powerful oxidizing agent
wed in concentrated solution in rocket fuels and
in dilute solution as a
hair bleach. An aqueous
sulation of H2O2 is 30% by mass and has
density of #liligime calculat the
Ⓒmolality
⑥mole fraction of
molarity.
20
9.
B. A sample of Commercial Concentrated hydrochloric
ET
If a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.