(a) Interpretation: In the light bulb conductivity test, whether 0.1 M HF solution gives a dark, dim or bright light needs to be determined. Concept introduction: Strong electrolyte is defined as a solution which completely dissociates into ions. The resultant ions are good conductor of heat and electricity. The dissociation of a strong electrolyte is represented as follows: A B ( a q ) → A + ( a q ) + B − ( a q ) A weak electrolyte is defined as a solution which partially dissociates into ions. They are weak conductor of heat and electricity as compared to strong electrolytes. The dissociation of weak electrolyte is represented as follows: A B ( a q ) ⇌ A + ( a q ) + B − ( a q ) Non-electrolyte is defined as a solution which do not dissociate into ions. They do not conduct heat and electricity due to absence of ions in the solution. The dissociation reaction does not take place. A B ( a q ) → no reaction
(a) Interpretation: In the light bulb conductivity test, whether 0.1 M HF solution gives a dark, dim or bright light needs to be determined. Concept introduction: Strong electrolyte is defined as a solution which completely dissociates into ions. The resultant ions are good conductor of heat and electricity. The dissociation of a strong electrolyte is represented as follows: A B ( a q ) → A + ( a q ) + B − ( a q ) A weak electrolyte is defined as a solution which partially dissociates into ions. They are weak conductor of heat and electricity as compared to strong electrolytes. The dissociation of weak electrolyte is represented as follows: A B ( a q ) ⇌ A + ( a q ) + B − ( a q ) Non-electrolyte is defined as a solution which do not dissociate into ions. They do not conduct heat and electricity due to absence of ions in the solution. The dissociation reaction does not take place. A B ( a q ) → no reaction
Solution Summary: The author defines strong electrolyte as a solution which completely dissociates into ions, which are good conductors of heat and electricity.
In the light bulb conductivity test, whether 0.1 M HF solution gives a dark, dim or bright light needs to be determined.
Concept introduction:
Strong electrolyte is defined as a solution which completely dissociates into ions. The resultant ions are good conductor of heat and electricity.
The dissociation of a strong electrolyte is represented as follows:
AB(aq)→A+(aq)+B−(aq)
A weak electrolyte is defined as a solution which partially dissociates into ions. They are weak conductor of heat and electricity as compared to strong electrolytes. The dissociation of weak electrolyte is represented as follows:
AB(aq)⇌A+(aq)+B−(aq)
Non-electrolyte is defined as a solution which do not dissociate into ions. They do not conduct heat and electricity due to absence of ions in the solution.
The dissociation reaction does not take place.
AB(aq)→no reaction
Interpretation Introduction
(b)
Interpretation:
In the light bulb conductivity test, whether 0.1 M NaCl solution gives a dark, dim or bright light needs to be determined.
Concept introduction:
Strong electrolyte is defined as a solution which completely dissociates into ions. The resultant ions are good conductor of heat and electricity.
The dissociation of a strong electrolyte is represented as follows:
AB(aq)→A+(aq)+B−(aq)
A weak electrolyte is defined as a solution which partially dissociates into ions. They are weak conductor of heat and electricity as compared to strong electrolytes. The dissociation of weak electrolyte is represented as follows:
AB(aq)⇌A+(aq)+B−(aq)
Non-electrolyte is defined as a solution which do not dissociate into ions. They do not conduct heat and electricity due to absence of ions in the solution.
The dissociation reaction does not take place.
AB(aq)→no reaction
Interpretation Introduction
(c)
Interpretation:
In the light bulb conductivity test, whether 0.1 M glucose solution gives a dark, dim or bright light needs to be determined.
Concept introduction:
Strong electrolyte is defined as a solution which completely dissociates into ions. The resultant ions are good conductor of heat and electricity.
The dissociation of a strong electrolyte is represented as follows:
AB(aq)→A+(aq)+B−(aq)
A weak electrolyte is defined as a solution which partially dissociates into ions. They are weak conductor of heat and electricity as compared to strong electrolytes. The dissociation of weak electrolyte is represented as follows:
AB(aq)⇌A+(aq)+B−(aq)
Non-electrolyte is defined as a solution which do not dissociate into ions. They do not conduct heat and electricity due to absence of ions in the solution.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell