Concept explainers
(a)
Interpretation:
The oxidation number for each of the elements present in NO2 is to be determined.
Concept introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are:
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation states of Group 2 elements are taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(b)
Interpretation:
The oxidation number for each of the elements present in SO3 is to be determined.
Concept introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation states of Group 1 elements is taken to be +1.
- The oxidation states of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(c)
Interpretation:
The oxidation number for each of the elements present in COCl2 is to be determined.
Concept introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation states of Group 1 elements is taken to be +1.
- The oxidation states of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(d)
Interpretation:
The oxidation number for each of the elements present in CH2Cl2 is to be determined.
Concept introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation states of Group 1 elements is taken to be +1.
- The oxidation states of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(e)
Interpretation:
The oxidation number for each of the elements present in KClO3 is to be determined.
Concept introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are:
- The oxidation states of Group 1 elements is taken to be +1.
- The oxidation states of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(f)
Interpretation:
The oxidation number for each of the elements present in HNO3 is to be determined.
Concept introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation states of Group 1 elements is taken to be +1.
- The oxidation states of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- A pdf file of your hand drawn, stepwise mechanisms for the reactions. For each reaction in the assignment, you must write each mechanism three times (there are 10 reactions, so 30 mechanisms). (A) do the work on a tablet and save as a pdf., it is expected to write each mechanism out and NOT copy and paste the mechanism after writing it just once. Everything should be drawn out stepwise and every bond that is formed and broken in the process of the reaction, and is expected to see all relevant lone pair electrons and curved arrows. Aldol: NaOH HO H Δ NaOH Δarrow_forwardNonearrow_forwardDraw structures corresponding to the following names and give IUPAC names for the following compounds: (8 Point) a) b) c) CH3 CH2CH3 CH3CHCH2CH2CH CH3 C=C H3C H H2C=C=CHCH3 d) CI e) (3E,5Z)-2,6-Dimethyl-1,3,5,7-octatetraene f) (Z)-4-bromo-3-methyl-3-penten-1-yne g) cis-1-Bromo-2-ethylcyclopentane h) (5R)-4,4,5-trichloro-3,3-dimethyldecanearrow_forward
- Draw a Newman projection from carbon 3 to carbon 2 in the highest energy conformation for the following molecule. What is this conformation called? What kind of strain is present? Brarrow_forwardWhich of the following dienophiles is most reactive in a Diels-Alder reaction: Please explain why the correct answer to this question is option 5. Please provide a detailed explanation.arrow_forwardWhich of the following would you expect to be aromatic? Please provide a detailed explanation.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning