General Chemistry
General Chemistry
7th Edition
ISBN: 9780073402758
Author: Chang, Raymond/ Goldsby
Publisher: McGraw-Hill College
Question
Book Icon
Chapter 4, Problem 4.60QP

(a)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of 0.100M of solution has to be identified.

Concept introduction:

 Molarity of the solution=MolesofsoluteVolumeinliter

 The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

 Mole=Concentration(M)×volume(L)

 The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

 Mass=Mole×Molarmass

(a)

Expert Solution
Check Mark

Explanation of Solution

Given,

    The concentration of solution is 0.100M

    The volume of solution is 2.50×102mL

The number of mole of cesium iodide can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of cesium iodide can be calculated by using,

From the standard data molar mass of CsI=259.8g/mol

=0.025mol×259.8g/mol=6.495g=6.50g

The 6.50g of cesium iodide is used to  2.50×102mL of a 0.100M of solution.

(b)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of 0.100M of solution has to be identified.

Concept introduction:

 Molarity of the solution=MolesofsoluteVolumeinliter

 The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

 Mole=Concentration(M)×volume(L)

 The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

 Mass=Mole×Molarmass

(b)

Expert Solution
Check Mark

Explanation of Solution

Given,

    The concentration of solution is 0.100M

    The volume of solution is 2.50×102mL

The number of mole of H2SO4 can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of H2SO4 can be calculated by using,

From the standard data molar mass of H2SO4=98.086g/mol

=0.025mol×98.086g/mol=2.45g

The 2.45g of H2SO4 is used to  2.50×102mL of a 0.100M of solution.

(c)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of a 0.100M of solution has to be identified.

Concept introduction:

 Molarity of the solution=MolesofsoluteVolumeinliter

 The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

 Mole=Concentration(M)×volume(L)

 The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

 Mass=Mole×Molarmass

(c)

Expert Solution
Check Mark

Explanation of Solution

Given,

    The concentration of solution is 0.100M

    The volume of solution is 2.50×102mL

The number of mole can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of Na2CO3 can be calculated by using,

From the standard data molar mass of Na2CO3=105.99g/mol

=0.025mol×105.99g/mol=2.649g

The 2.649g of Na2CO3 is used to  2.50×102mL of a 0.100M of solution.

(d)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of a 0.100M of solution has to be identified.

Concept introduction:

 Molarity of the solution=MolesofsoluteVolumeinliter

 The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

 Mole=Concentration(M)×volume(L)

 The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

 Mass=Mole×Molarmass

(d)

Expert Solution
Check Mark

Explanation of Solution

Given,

    The concentration of solution is 0.100M

    The volume of solution is 2.50×102mL

The number of mole can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of K2Cr2O7 can be calculated by using,

From the standard data molar mass of K2Cr2O7=294.2g/mol

=0.025mol×294.2g/mol=7.355g

The 7.355g of K2Cr2O7 is used to  2.50×102mL of a 0.100M of solution.

(e)

Interpretation Introduction

Interpretation:

Mass of solute needed to make 2.50×102mL of a 0.100M of solution has to be identified.

Concept introduction:

 Molarity of the solution=MolesofsoluteVolumeinliter

 The mole of the solute is calculated by multiplication of concentration of solution and volume of the solution and it is,

 Mole=Concentration(M)×volume(L)

 The mass of compound is given by the multiplication of mole of the compound and molar mass of the compound in gram.

 Mass=Mole×Molarmass

(e)

Expert Solution
Check Mark

Explanation of Solution

Given,

    The concentration of solution is 0.100M

    The volume of solution is 2.50×102mL

The number of mole can be calculated by using

Mole=Concentration(M)×volume(L)

Number of Moles=0.100M×2.50×102×103L=0.025mol

The mass of KMnO4 can be calculated by using,

From the standard data molar mass of KMnO4=158.04g/mol

=0.025mol×158.04g/mol=3.95g

The 3.95g of KMnO4 is used to  2.50×102mL of a 0.100M of solution.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Part VII. Below are the 'HNMR, 13 C-NMR, COSY 2D- NMR, and HSQC 2D-NMR (similar with HETCOR but axes are reversed) spectra of an organic compound with molecular formula C6H1003 - Assign chemical shift values to the H and c atoms of the compound. Find the structure. Show complete solutions. Predicted 1H NMR Spectrum 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 f1 (ppm) Predicted 13C NMR Spectrum 100 f1 (ppm) 30 220 210 200 190 180 170 160 150 140 130 120 110 90 80 70 -26 60 50 40 46 30 20 115 10 1.0 0.9 0.8 0 -10
Q: Arrange BCC and Fec metals, in sequence from the Fable (Dr. R's slides) and Calculate Volume and Density. Aa BCC V 52 5 SFCC
None

Chapter 4 Solutions

General Chemistry

Ch. 4.5 - Prob. 1PECh. 4.5 - Prob. 2PECh. 4.5 - Prob. 3PECh. 4.5 - Prob. 1RCCh. 4.6 - Prob. 1PECh. 4.6 - Prob. 1RCCh. 4.6 - Prob. 2PECh. 4.6 - Prob. 3PECh. 4 - Prob. 4.1QPCh. 4 - Prob. 4.2QPCh. 4 - Prob. 4.3QPCh. 4 - 4.4 What is the difference between the following...Ch. 4 - 4.5 Water is an extremely weak electrolyte and...Ch. 4 - Prob. 4.6QPCh. 4 - Prob. 4.7QPCh. 4 - 4.8 Which of the following diagrams best...Ch. 4 - Prob. 4.9QPCh. 4 - Prob. 4.10QPCh. 4 - Prob. 4.11QPCh. 4 - Prob. 4.12QPCh. 4 - Prob. 4.13QPCh. 4 - Prob. 4.14QPCh. 4 - Prob. 4.15QPCh. 4 - Prob. 4.16QPCh. 4 - Prob. 4.17QPCh. 4 - Prob. 4.18QPCh. 4 - Prob. 4.19QPCh. 4 - Prob. 4.20QPCh. 4 - 4.21 Write ionic and net ionic equations for the...Ch. 4 - Prob. 4.22QPCh. 4 - Prob. 4.23QPCh. 4 - Prob. 4.24QPCh. 4 - Prob. 4.25QPCh. 4 - Prob. 4.26QPCh. 4 - Prob. 4.27QPCh. 4 - Prob. 4.28QPCh. 4 - Prob. 4.29QPCh. 4 - Prob. 4.30QPCh. 4 - Prob. 4.31QPCh. 4 - Prob. 4.32QPCh. 4 - Prob. 4.33QPCh. 4 - Prob. 4.34QPCh. 4 - Prob. 4.35QPCh. 4 - Prob. 4.36QPCh. 4 - Prob. 4.37QPCh. 4 - Prob. 4.38QPCh. 4 - 4.39 For the complete redox reactions given here,...Ch. 4 - Prob. 4.40QPCh. 4 - Prob. 4.41QPCh. 4 - Prob. 4.42QPCh. 4 - Prob. 4.43QPCh. 4 - Prob. 4.44QPCh. 4 - Prob. 4.45QPCh. 4 - Prob. 4.46QPCh. 4 - Prob. 4.47QPCh. 4 - Prob. 4.48QPCh. 4 - Prob. 4.49QPCh. 4 - Prob. 4.50QPCh. 4 - Prob. 4.51QPCh. 4 - Prob. 4.52QPCh. 4 - Prob. 4.53QPCh. 4 - Prob. 4.54QPCh. 4 - Prob. 4.55QPCh. 4 - Prob. 4.56QPCh. 4 - Prob. 4.57QPCh. 4 - Prob. 4.58QPCh. 4 - Prob. 4.59QPCh. 4 - Prob. 4.60QPCh. 4 - Prob. 4.61QPCh. 4 - Prob. 4.62QPCh. 4 - Prob. 4.63QPCh. 4 - Prob. 4.64QPCh. 4 - Prob. 4.65QPCh. 4 - Prob. 4.66QPCh. 4 - Prob. 4.67QPCh. 4 - Prob. 4.68QPCh. 4 - Prob. 4.69QPCh. 4 - 4.70 Distilled water must be used in the...Ch. 4 - 4.71 If 30.0 mL of 0.150 M CaCl2 is added to 15.0...Ch. 4 - Prob. 4.72QPCh. 4 - Prob. 4.73QPCh. 4 - Prob. 4.74QPCh. 4 - Prob. 4.75QPCh. 4 - Prob. 4.76QPCh. 4 - Prob. 4.77QPCh. 4 - Prob. 4.78QPCh. 4 - Prob. 4.79QPCh. 4 - Prob. 4.80QPCh. 4 - Prob. 4.81QPCh. 4 - Prob. 4.82QPCh. 4 - Prob. 4.83QPCh. 4 - Prob. 4.84QPCh. 4 - Prob. 4.85QPCh. 4 - Prob. 4.86QPCh. 4 - Prob. 4.87QPCh. 4 - Prob. 4.88QPCh. 4 - Prob. 4.89QPCh. 4 - Prob. 4.90QPCh. 4 - Prob. 4.91QPCh. 4 - Prob. 4.92QPCh. 4 - Prob. 4.93QPCh. 4 - 4.74 The molecular formula of malonic acid is...Ch. 4 - Prob. 4.95QPCh. 4 - Prob. 4.96QPCh. 4 - Prob. 4.97QPCh. 4 - Prob. 4.98QPCh. 4 - Prob. 4.99QPCh. 4 - Prob. 4.100QPCh. 4 - Prob. 4.101QPCh. 4 - Prob. 4.102QPCh. 4 - 4.103 These are common household compounds: table...Ch. 4 - Prob. 4.104QPCh. 4 - Prob. 4.105QPCh. 4 - Prob. 4.106QPCh. 4 - 4.107 A number of metals are involved in redox...Ch. 4 - Prob. 4.108QPCh. 4 - Prob. 4.109QPCh. 4 - Prob. 4.110QPCh. 4 - Prob. 4.111QPCh. 4 - Prob. 4.112QPCh. 4 - Prob. 4.114SPCh. 4 - Prob. 4.115SPCh. 4 - Prob. 4.116SPCh. 4 - Prob. 4.117SPCh. 4 - Prob. 4.118SP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY