MindTap Engineering for Askeland/Wright's The Science and Engineering of Materials, 7th Edition, [Instant Access], 2 terms (12 months)
7th Edition
ISBN: 9781305111219
Author: Donald R. Askeland; Wendelin J. Wright
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.50P
(a)
To determine
The constant in the Hall-petch equation.
(b)
To determine
The strength of the titanium for the given grain size.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In an engineering application, the material is a strip of iron with a fixed crystallographic structure subject
to a tensile load during operation. The part failed (yielded) during operation and needs to be replaced with
a component with better properties. You are told that two other iron strips had failed at yield stresses of
110 and 120 MPa, with grain sizes of 30 microns and 25 microns respectively. The current strip has a grain
size of 20 microns. The diameter of the rod is 1 mm and the load applied is 100 N. What is the yield stress of
the new part C and would you recommend it for operation?
Select one:
a. 140.5, no
Ob. 129.5, yes
OC.
120.5 MPa, no
O d. 133.5 MPa, yes
O e. 123.5 MPa, yes
In an engineering application, the material is a strip of iron with a fixed crystallographic structure subject to a tensile load during operation.
The part failed (yielded) during operation and needs to be replaced with a component with better properties. You are told that two other iron
strips had failed at yield stresses of 110 and 120 MPa, with grain sizes of 30 microns and 25 microns respectively. The current strip has a grain
size of 20 microns. The diameter of the rod is 1 mm and the load applied is 100 N. What is the yield stress of the new part C and would you
recommend it for operation?
Select one:
a.
O b. 129.5, yes
C.
133.5 MPa, yes
e.
120.5 MPa, no
d. 140.5, no
123.5 MPa, yes
Stress (MPa)
500
400
Consider the brass alloy for which the stress-strain
behavior is shown in the Animated Figure 7.12. A
cylindrical specimen of this material 9.9mm (0.3898 in.)
in diameter and 98.8mm (3.890 in.) long is pulled in
tension with a force of 9780N(2199/b). If it is known
that this alloy has a value for Poisson's ratio of 0.35,
compute (a) the specimen elongation, (b) the reduction
in specimen diameter. Note: because the diameter
decreases, enter a minus sign in your answer.
Tensile strength
450 MPa (65,000 psi),
Strain =0
Stress = 0 MPA
Stress =0 psi
70
Strain = 0
Stress
0 MPA
60
Stress = 0 psi
103 psi
50
40
MPa
Yield strength
300
250 MPa (36,000 psi)
40
30
200
200
20
100
10
100
0
0
T
10
P
0.10
0.20
Strain
10.065
0
0.30
0.40
30
20
10
Stress (10 psi)
Chapter 4 Solutions
MindTap Engineering for Askeland/Wright's The Science and Engineering of Materials, 7th Edition, [Instant Access], 2 terms (12 months)
Ch. 4 - Gold has 5.82108vacancies/cm3 at equilibrium at...Ch. 4 - Prob. 4.2PCh. 4 - Calculate the number of vacancies per cm3 expected...Ch. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Au and Ag form a substitutional solid solution....
Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Write down the defect chemistry equation for...Ch. 4 - Prob. 4.20PCh. 4 - What is the Burger’s vector orientation...Ch. 4 - What is slip system and what role does it play in...Ch. 4 - Draw a Burgers circuit around the dislocation...Ch. 4 - What are the Miller indices of the slip...Ch. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Calculate the length of the Burgers vector in the...Ch. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - The crystal shown in Figure 4-19 contains two...Ch. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Why is it that single crystal and polycryst alline...Ch. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Determine the ASTM grain size number for the...Ch. 4 - Certain ceramics with special dielectric...Ch. 4 - Prob. 4.61PCh. 4 - Calculate the angle of a smalla ngle grain...Ch. 4 - For BCC iron, calculate the average distance...Ch. 4 - Every time we alloy a metal, it gets stronger. Is...Ch. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75DPCh. 4 - You would like a metal plate with good...Ch. 4 - Prob. 4.77DPCh. 4 - Temperature dependence of vacancy conc enlralwns....Ch. 4 - Prob. 4.79CPCh. 4 - Prob. 4.80CPCh. 4 - Describe the problems associated with metal...Ch. 4 - Prob. 4.2KP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cylindrical specimen of a brass alloy having a length of 104 mm (4.094 in.) must elongate only 5.20 mm (0.2047 in.) when a tensile load of 95000 N (21360 lbf) is applied. Under these circumstances what must be the radius of the specimen? Consider this brass alloy to have the stress-strain behavior shown in the Animated Figure 7.12.arrow_forwardDetermine the tensile yield strength (0.2% offset) and the maximum strength of a metal alloy having the following tensile stress-strain diagram. Select one: The tensile yield strength Sy = 100 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 170 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 150 Mpa and the maximum strength Smax = 200 Mpa. The tensile yield strength Sy = 240 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 80 Mpa and the maximum strength Smax = 250 Mpa.arrow_forwardDetermine the tensile yield strength (0.2% offset) and the maximum strength of a metal alloy having the following tensile stress-strain diagram. Select one: The tensile yield strength Sy = 100 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 170 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 150 Mpa and the maximum strength Smax = 200 Mpa. The tensile yield strength Sy = 240 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 80 Mpa and the maximum strength Smax = 250 Mpa.arrow_forward
- The flow stress for an alloy is 115 Mpa when its dislocation density is 10^6 cm^-2 and 207 Mpa when its dislocation density is 10^8 cm^-2. When the flow stress is 359 Mpa, Find the dislocation density.arrow_forwardCommon aluminum foil for household use is nearly pure aluminum. A box of this product at a local supermarket is advertised as giving 75 ft°of material (in a roll 304 mm wide by 22.8 m long). If the foil is 0.5 mil (12.7 µm) thick, calculate the number of atoms of aluminum in the roll. Given: Density of Aluminum: p= 2.7 Mg/m³ Molar mass of Aluminum: MAI= 26.98 g/mol Avogadro's Number: AN = 0.6203 (10)²ªarrow_forwardAnimated Figure 9.41 is a plot of the logarithm stress versus the Larson-Miller parameter for an S-590 alloy. A component made of this alloy is subjected to a stress of 600 MPa. At what temperature will the rupture lifetime be 200 h?arrow_forward
- Consider the tensile stress-strain diagram in the figure below labeled 1 and 2.arrow_forwardConsider an aluminum polycrystal with a grain size of 10 μm. If a dislocationsource at the center of a grain emits dislocations under an appliedshear stress of 50 MPa that pile up at the grain boundaries, what is the stressexperienced by a grain boundary? Take G = 26 GPa and b = 0.3 nm.arrow_forwardA copper-zinc alloy has the following properties: Grain Diameter (mm) Strength (MPa) 0.015 170 MPa 0.025 158 MPa 0.035 151 MPa 0.050 145 MPa Determine (a) the constants in the Hall-Petch equation; and (b) the grain size required to obtain a strength of 200 MPa.arrow_forward
- The compressive strength of alumina quartz (Al2O3) is 2.1 GPa. A quartz tube is being used for a vacuum furnace. Both ends of the tube are constrained and cannot move. To what temperature can the tube be heated up from room temperature such that the tube won’t fracture due to the thermal stress?arrow_forwardConsider an undeformed, fully annealed copper sample which is loaded in uniaxial tension. Its yield strength is known to be (3.800x10^1) MPa, and its dislocation density was measured to be (3.200x10^12) m-². The yield strength varies with dislocation density according to the equation: Oy = 0; + kwн* √P i Where KWH is known to be (3.430x10^-5) MPa*m. The copper sample is plastically loaded to (2.50x10^2) MPa, then unloaded. Calculate the resulting dislocation density expressed in m-².arrow_forwardPravinbhaiarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY