
(a)
Interpretation:
The cation to anion ratio of zinc HCP metal needs to be calculated. The slip processes needs to be determined and the critical resolved shear stress needs to be estimated.
Concept Introduction:
Shear stress is defined as the component of stress in plane with the cross section of the material. It arises due to force

Answer to Problem 4.40P
The c/a ratio is
The critical resolved shear stress is low in nature.
Explanation of Solution
From appendix A, for zinc metal the lattice parameter c is
The ratio can be calculated as follows:
The critical resolved shear stress is low in nature.
(b)
Interpretation:
The cation to anion ratio of magnesium HCP metal needs to be calculated. The slip processes needs to be determined and the critical resolved shear stress needs to be estimated.
Concept Introduction:
Shear stress is defined as the component of stress in plane with the cross section of the material. It arises due to force vector component being parallel to the cross section of the material. The cation to anion ratio is simply ratio of radius of cation and anion present in the crystal. The value is different for different metal crystals. The component of the shear stress that resolved in the slip direction, resulting initiation of slip in a grain is known as crystal resolved shear stress.

Answer to Problem 4.40P
The
The critically resolved shear stress is medium in nature.
Explanation of Solution
From appendix
The ratio can be calculated as follows:
The critical resolved shear stress is medium in nature.
(c)
Interpretation:
The cation to anion ratio of titanium HCP metal needs to be calculated. The slip processes needs to be determined and the critical resolved shear stress needs to be estimated.
Concept Introduction:
Shear stress is defined as the component of stress in plane with the cross section of the material. It arises due to force vector component being parallel to the cross section of the material. The cation to anion ratio is simply ratio of radius of cation and anion present in the crystal. The value is different for different metal crystals. The component of the shear stress that resolved in the slip direction, resulting initiation of slip in a grain is known as crystal resolved shear stress.

Answer to Problem 4.40P
The
The critically resolved shear stress is high in nature.
Explanation of Solution
From appendix
The ratio is
The critical resolved shear stress is high in nature.
(d)
Interpretation:
The cation to anion ratio of zirconium HCP metal needs to be calculated. The slip processes needs to be determined and the critical resolved shear stress needs to be estimated.
Concept Introduction:
Shear stress is defined as the component of stress in plane with the cross section of the material. It arises due to force vector component being parallel to the cross section of the material. The cation to anion ratio is simply ratio of radius of cation and anion present in the crystal. The value is different for different metal crystals. The component of the shear stress that resolved in the slip direction, resulting initiation of slip in a grain is known as crystal resolved shear stress.

Answer to Problem 4.40P
The
The critically resolved shear stress is high in nature.
Explanation of Solution
From appendix
The ratio can be calculated as follows:
The critical resolved shear stress is high in nature.
(e)
Interpretation:
The cation to anion ratio of rhenium HCP metal needs to be calculated. The slip processes needs to be determined and the critical resolved shear stress needs to be estimated.
Concept Introduction:
Shear stress is defined as the component of stress in plane with the cross section of the material. It arises due to force vector component being parallel to the cross section of the material. The cation to anion ratio is simply ratio of radius of cation and anion present in the crystal. The value is different for different metal crystals. The component of the shear stress that resolved in the slip direction, resulting initiation of slip in a grain is known as crystal resolved shear stress.

Answer to Problem 4.40P
The
The critically resolved shear stress is medium in nature.
Explanation of Solution
From appendix
The ratio is calculated as follows:
The critical resolved shear stress is high in nature.
(f)
Interpretation:
The cation to anion ratio of beryllium HCP metal needs to be calculated. The slip processes needs to be determined and the critical resolved shear stress needs to be estimated.
Concept Introduction:
Shear stress is defined as the component of stress in plane with the cross section of the material. It arises due to force vector component being parallel to the cross section of the material. The cation to anion ratio is simply ratio of radius of cation and anion present in the crystal. The value is different for different metal crystals. The component of the shear stress that resolved in the slip direction, resulting initiation of slip in a grain is known as crystal resolved shear stress.

Answer to Problem 4.40P
The
The critically resolved shear stress is high in nature.
Explanation of Solution
From appendix
The ratio is calculated as follows:
The critical resolved shear stress is high in nature.
Want to see more full solutions like this?
Chapter 4 Solutions
Essentials Of Materials Science And Engineering
- Qu. 2 The 100-kg crate is subjected to the action of two forces. If it is originally at rest, determine the distance it slides in order to attain a speed of 6 m/s. The coefficient of kinetic friction between the crate and the surface is uk = 0.2. i need to show all work step by step problemsarrow_forwardA4.2- Develop the column interaction diagram for a tied short column, shown in Figure 2. Given: f'c = 35 MPa fy = 400 MPa Longitudinal bars: 8-35M Ties: 10M@ 300 Clear cover to the ties: 40mm T 500 mm 500 mm Figure 2arrow_forward1° ⑤ Aa "Human-written solution required" 2. Using the characteristics of Fig. 6.11, determine ID for the following levels of VGs (with VDS > VP): a. VGs = 0V. b. VGs=-1 V. c. VGs -1.5 V. d. VGS -1.8 V. e. VGS = -4 V. f. VGs=-6V. 3. Using the results of problem 2 plot the transfer characteristics of ID vs. VGS- 4. a. Determine Vps for VGs = 0V and Ip = 6 mA using the characteristics of Fig. 6.11. b. Using the results of part (a), calculate the resistance of the JFET for the region Ip = 0 to 6 mA for VGs =0V. c. Determine Vps for VGS = -1 V and ID = 3 mA. d. Using the results of part (c), calculate the resistance of the JFET for the region ID = 0 to 3 mA for VGs -1 V. e. Determine Vps for VGs = -2 V and ID = 1.5 mA. f. Using the results of part (e), calculate the resistance of the JFET for the region ID = 0 to 1.5 mA for VGS-2 V. g. Defining the result of part (b) as ro, determine the resistance for VGs -1 V using Eq. (6.1) and compare with the results of part (d). h. Repeat part (g)…arrow_forward
- (◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?offset=next&assignmentProblemID=18992146arrow_forward(read image)arrow_forward(◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?assignmentProblemID=18992147&offset=nextarrow_forwardRecommended textbooks for you
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY
MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage LearningBasics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY