Loose Leaf For Introduction To Chemical Engineering Thermodynamics
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259878084
Author: Smith Termodinamica En Ingenieria Quimica, J.m.; Van Ness, Hendrick C; Abbott, Michael; Swihart, Mark
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 4, Problem 4.3P

(a)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the methane is to be calculated when some amount of heat is given to the to the methane.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(a)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=626.817K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for methane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dmethane1.7029.0812.1640

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=1.702×373.15×(τ1)+9.081×1032373.152(τ21)+2.164×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=635.1013(τ1)+632.223(τ21)37.479(τ31)373.15TΔCPRdT=635.1013τ635.1013+632.223τ2632.22337.479τ3+37.479373.15TΔCPRdT=37.479τ3+632.223τ2+635.1013τ1229.8453

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=37.479τ3+632.223τ2+635.1013τ1229.845337.479τ3632.223τ2635.1013τ+2673.194=0

On solving,

  τ=1.6798,2.412,17.6

Considering positive value of temperature τ=1.6798

Hence,

  τ=TT0=T100+273.15=1.6798T=626.817K

(b)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the ethane is to be calculated when some amount of heat is given to the to the ethane.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(b)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=538.455K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for ethane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dethane1.13119.2255.5610

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=1.131×373.15×(τ1)+19.225×1032373.152(τ21)+5.561×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=422.033(τ1)+1338.453(τ21)96.31(τ31)373.15TΔCPRdT=422.033τ422.033+1338.453τ21338.45396.31τ3+96.31373.15TΔCPRdT=96.31τ3+1338.453τ2+422.033τ1664.176

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=96.31τ3+1338.453τ2+422.033τ1664.17696.31τ31338.453τ2422.033τ+3107.525=0

On solving,

  τ=1.443,1.592,14.0458

Considering positive value of temperature τ=1.443

Hence,

  τ=TT0=T100+273.15=1.443T=538.455K

(c)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the propane is to be calculated when some amount of heat is given to the to the propane.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(c)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=493.3043K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for propane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dpropane1.21328.7858.8240

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=1.213×373.15×(τ1)+28.785×1032373.152(τ21)+8.824×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=452.631(τ1)+2004.025(τ21)152.825(τ31)373.15TΔCPRdT=452.631τ452.631+2004.025τ22004.025152.825τ3+152.825373.15TΔCPRdT=152.825τ3+2004.025τ2+452.631τ2303.831

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=152.825τ3+2004.025τ2+452.631τ2303.831152.825τ32004.025τ2452.631τ+3747.18=0

On solving,

  τ=1.322,1.405,13.197

Considering positive value of temperature τ=1.322

Hence,

  τ=TT0=T100+273.15=1.322T=493.3043K

(d)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the n -butane is to be calculated when some amount of heat is given to the to the n -butane.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(d)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=466.81K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for n -butane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dnbutane1.93536.91511.4020

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=1.935×373.15×(τ1)+36.915×1032373.152(τ21)+11.402×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=722.045(τ1)+2570.039(τ21)197.474(τ31)373.15TΔCPRdT=722.045τ722.045+2570.039τ22570.039197.474τ3+197.474373.15TΔCPRdT=197.474τ3+2570.039τ2+722.045τ3094.61

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=197.474τ3+2570.039τ2+722.045τ3094.61197.474τ32570.039τ2722.045τ+4537.96=0

On solving,

  τ=1.251,1.396,13.16

Considering positive value of temperature τ=1.251

Hence,

  τ=TT0=T100+273.15=1.251T=466.81K

(e)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the n -hexane is to be calculated when some amount of heat is given to the n -hexane.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(e)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=438.45K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for n -hexanein equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dnhexane3.02553.72216.7910

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=3.025×373.15×(τ1)+53.722×1032373.152(τ21)+16.791×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=1128.78(τ1)+3740.15(τ21)290.807(τ31)373.15TΔCPRdT=1128.78τ1128.78+3740.15τ23740.15290.807τ3+290.807373.15TΔCPRdT=290.807τ3+3740.15τ2+1128.78τ4578.12

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=290.807τ3+3740.15τ2+1128.78τ4578.12290.807τ33740.15τ21128.78τ+6021.471=0

On solving,

  τ=1.175,1.351,13.04

Considering positive value of temperature τ=1.175

Hence,

  τ=TT0=T100+273.15=1.175T=438.45K

(f)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the n -octane is to be calculated when some amount of heat is given to the to the n -octane.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(f)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=371.695K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for n -octanein equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dnhexane4.10870.56722.2080

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=4.108×373.15×(τ1)+70.567×1032373.152(τ21)+22.208×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=1532.9002(τ1)+4912.91(τ21)384.63(τ31)373.15TΔCPRdT=1532.9002τ1532.9002+4912.91τ24912.91384.63τ3+384.63373.15TΔCPRdT=384.63τ3+4912.91τ2+1532.9002τ6061.184

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=384.63τ3+4912.91τ2+1532.9002τ6061.184384.63τ34912.91τ21532.9002τ+6021.471=0

On solving,

  τ=0.9961,1.21,12.987

Considering positive value of temperature τ=0.9961

Hence,

  τ=TT0=T100+273.15=0.9961T=371.695K

(g)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the propylene is to be calculated when some amount of heat is given to the to the propylene.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(g)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=513.08K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for propylenein equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dpropylene1.63722.7066.9150

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=1.637×373.15×(τ1)+22.706×1032373.152(τ21)+6.915×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=610.847(τ1)+1580.8(τ21)119.763(τ31)373.15TΔCPRdT=610.847τ610.847+1580.8τ21580.8119.763τ3+119.763373.15TΔCPRdT=119.763τ3+1580.8τ2+610.847τ2071.88

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=119.763τ3+1580.8τ2+610.847τ2071.88119.763τ31580.8τ2610.847τ+3515.233=0

On solving,

  τ=1.375,1.592,13.416

Considering positive value of temperature τ=1.375

Hence,

  τ=TT0=T100+273.15=1.375T=513.08K

(h)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the 1-pentene is to be calculated when some amount of heat is given to the to the 1-pentene.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(h)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=457.855K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for 1-pentene in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105D1pentene2.69139.75312.4470

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=2.691×373.15×(τ1)+39.753×1032373.152(τ21)+12.447×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=1004.147(τ1)+2767.62(τ21)215.57(τ31)373.15TΔCPRdT=1004.147τ1004.147+2767.62τ22767.62215.57τ3+215.57373.15TΔCPRdT=215.57τ3+2767.62τ2+1004.147τ3556.197

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=215.57τ3+2767.62τ2+1004.147τ3556.197215.57τ32767.62τ21004.147τ+4999.546=0

On solving,

  τ=1.227,1.447,13.059

Considering positive value of temperature τ=1.227

Hence,

  τ=TT0=T100+273.15=1.227T=457.855K

(i)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the 1-heptene is to be calculated when some amount of heat is given to the to the 1-heptene.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(i)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=433.97K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for 1-heptenein equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105D1heptene3.76856.58817.8470

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=3.768×373.15×(τ1)+56.588×1032373.152(τ21)+17.847×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=1406.03(τ1)+3939.68(τ21)309.097(τ31)373.15TΔCPRdT=1406.03τ1406.03+3939.68τ23939.68309.097τ3+309.097373.15TΔCPRdT=309.097τ3+3939.68τ2+1406.03τ5036.61

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=309.097τ3+3939.68τ2+1406.03τ5036.61309.097τ33939.68τ21406.03τ+6479.96=0

On solving,

  τ=1.163,1.389,12.97

Considering positive value of temperature τ=1.163

Hence,

  τ=TT0=T100+273.15=1.163T=433.97K

(j)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the 1-Octene is to be calculated when some amount of heat is given to the to the 1-Octene.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(j)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=426.51K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for 1-Octenein equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105D1Octene4.32464.9620.5210

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=4.324×373.15×(τ1)+64.96×1032373.152(τ21)+20.521×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=1613.5(τ1)+4522.55(τ21)355.41(τ31)373.15TΔCPRdT=1613.5τ1613.5+4522.55τ24522.55355.41τ3+355.41373.15TΔCPRdT=355.41τ3+4522.55τ2+1613.5τ5780.64

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=355.41τ3+4522.55τ2+1613.5τ5780.64355.41τ34522.55τ21613.5τ+7223.99=0

On solving,

  τ=1.143,1.37,12.95

Considering positive value of temperature τ=1.143

Hence,

  τ=TT0=T100+273.15=1.143T=426.51K

(k)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the acetyleneis to be calculated when some amount of heat is given to the to the acetylene.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(k)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=595.55K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for acetylenein equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dacetylene6.1321.95201.299

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=6.132×373.15×(τ1)+1.952×1032373.152(τ21)+03×373.153(τ31)+1.299×105373.15×(τ1τ)373.15TΔCPRdT=2288.15(τ1)+135.9(τ21)348.12(τ1τ)373.15TΔCPRdT=2288.15τ2288.15+135.9τ2135.9348.12+348.12τ373.15TΔCPRdT=135.9τ2+2288.15τ2772.17+348.12τ

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=135.9τ2+2288.15τ2772.17+348.12τ135.9τ2+2288.15τ4215.519+348.12τ=0135.9τ3+2288.15τ24215.519τ+348.12τ=0

On solving,

  τ=1.596,0.099,18.52

Considering positive value of temperature τ=1.596

Hence,

  τ=TT0=T100+273.15=1.596T=595.55K

(l)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the benzene is to be calculated when some amount of heat is given to the to the benzene.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(l)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=476.51K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for benzenein equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dbenzene0.20639.06413.3010

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=0.206×373.15×(τ1)+39.064×1032373.152(τ21)+13.301×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=76.87(τ1)+2719.65(τ21)230.36(τ31)373.15TΔCPRdT=76.87τ+76.87+2719.65τ22719.65230.36τ3+230.36373.15TΔCPRdT=230.36τ3+2719.65τ276.87τ2412.42

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=230.36τ3+2719.65τ276.87τ2412.42230.36τ32719.65τ2+76.87τ+3855.769=0

On solving,

  τ=1.277,1.12,11.65

Considering positive value of temperature τ=1.277

Hence,

  τ=TT0=T100+273.15=1.277T=476.51K

(m)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the ethanolis to be calculated when some amount of heat is given to the to the ethanol.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(m)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=380.613K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for ethanol in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dethanol3.51820.0016.0020

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=3.518×373.15×(τ1)+20.001×1032373.152(τ21)+6.002×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=1312.74(τ1)+1392.48(τ21)103.95(τ31)373.15TΔCPRdT=1312.74τ1312.74+1392.48τ21392.48103.95τ3+103.95373.15TΔCPRdT=103.95τ3+2719.65τ2+1312.74τ2601.27

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=103.95τ3+2719.65τ2+1312.74τ2601.27103.95τ32719.65τ21312.74τ+4044.62=0

On solving,

  τ=1.02,1.44,26.58

Considering positive value of temperature τ=1.02

Hence,

  τ=TT0=T100+273.15=1.02T=380.613K

(n)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the styreneis to be calculated when some amount of heat is given to the to the styrene.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(n)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=445.91K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for styrene in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dstyrene2.05050.19216.6620

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=2.050×373.15×(τ1)+50.192×1032373.152(τ21)+16.662×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=764.96(τ1)+3494.39(τ21)288.57(τ31)373.15TΔCPRdT=764.96τ764.96+3494.39τ23494.39288.57τ3+288.57373.15TΔCPRdT=288.57τ3+3494.39τ2+764.96τ3970.78

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=288.57τ3+3494.39τ2+764.96τ3970.78288.57τ33494.39τ2764.96τ+5414.126=0

On solving,

  τ=1.195,1.287,12.2

Considering positive value of temperature τ=1.195

Hence,

  τ=TT0=T100+273.15=1.195T=445.91K

(o)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the formaldehydeis to be calculated when some amount of heat is given to the to the formaldehyde.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(o)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=643.68K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for formaldehyde in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dformaldehyde2.2647.0221.8770

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=2.264×373.15×(τ1)+7.022×1032373.152(τ21)+1.877×1063×373.153(τ31)+0373.15×(τ1τ)373.15TΔCPRdT=844.81(τ1)+488.88(τ21)32.51(τ31)373.15TΔCPRdT=844.81τ844.81+488.88τ2488.8832.51τ3+32.51373.15TΔCPRdT=-32.51τ3+488.88τ2+844.81τ1301.18

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=-32.51τ3+488.88τ2+844.81τ1301.1832.51τ3488.88τ2844.81τ+2744.53=0

On solving,

  τ=1.725,3,16.31

Considering positive value of temperature τ=1.725

Hence,

  τ=TT0=T100+273.15=1.725T=643.68K

(p)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the ammoniais to be calculated when some amount of heat is given to the to the ammonia.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(p)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=416.06K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for ammonia in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dammonia3.5783.02000.186

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=3.578×373.15×(τ1)+3.020×1032373.152(τ21)+03×373.153(τ31)+0.186×105373.15×(τ1τ)373.15TΔCPRdT=1335.13(τ1)+210.25(τ21)49.85(τ1τ)373.15TΔCPRdT=1335.13τ1335.13+210.25τ2210.2549.85+49.85τ373.15TΔCPRdT=210.25τ2+1335.13τ1595.23+49.85τ

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=210.25τ2+1335.13τ1595.23+49.85τ1210.25τ2+1335.13τ3038.579+49.85τ=01210.25τ3+1335.13τ23038.579τ+49.85τ=0

On solving,

  τ=1.115,0.0165,2.23

Considering positive value of temperature τ=1.596

Hence,

  τ=TT0=T100+273.15=1.115T=416.06K

(q)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the carbon monoxideis to be calculated when some amount of heat is given to the to the carbon monoxide.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(q)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=764.96K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for carbon monoxide in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DCO3.3760.55700.031

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=3.376×373.15×(τ1)+0.557×1032373.152(τ21)+03×373.153(τ31)+0.031×105373.15×(τ1τ)373.15TΔCPRdT=1259.75(τ1)+38.78(τ21)8.31(τ1τ)373.15TΔCPRdT=1259.75τ1259.75+38.78τ238.788.31+8.31τ373.15TΔCPRdT=38.78τ2+1259.75τ1306.84+8.31τ

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=38.78τ2+1259.75τ1306.84+8.31τ38.78τ2+1259.75τ2750.19+8.31τ=038.78τ3+1259.75τ22750.19τ+8.31τ=0

On solving,

  τ=2.05,0.003,34.54

Considering positive value of temperature τ=2.05

Hence,

  τ=TT0=T100+273.15=2.05T=764.96K

(r)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the carbon dioxide is to be calculated when some amount of heat is given to the to the carbon dioxide.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(r)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=634.355K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for carbon dioxide in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DCO25.4571.04501.157

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=5.457×373.15×(τ1)+1.045×1032373.152(τ21)+03×373.153(τ31)+1.157×105373.15×(τ1τ)373.15TΔCPRdT=2036.28(τ1)+72.75(τ21)310.06(τ1τ)373.15TΔCPRdT=2036.28τ2036.28+72.75τ272.75310.06+310.06τ373.15TΔCPRdT=72.75τ2+2036.28τ2419.09+310.06τ

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=72.75τ2+2036.28τ2419.09+310.06τ72.75τ2+2036.28τ3862.44+310.06τ=072.75τ3+2036.28τ23862.44τ+310.06τ=0

On solving,

  τ=1.7,0.084,29.78

Considering positive value of temperature τ=1.7

Hence,

  τ=TT0=T100+273.15=1.7T=634.355K

(s)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the sulphur dioxide is to be calculated when some amount of heat is given to the to the sulphur dioxide.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(s)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=626.1457K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for sulphur dioxide in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DSO25.6990.80101.015

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=5.699×373.15×(τ1)+0.801×1032373.152(τ21)+03×373.153(τ31)+1.015×105373.15×(τ1τ)373.15TΔCPRdT=2126.58(τ1)+55.77(τ21)272(τ1τ)373.15TΔCPRdT=2126.58τ2126.58+55.77τ255.77272+272τ373.15TΔCPRdT=55.77τ2+2126.58τ2454.36+272τ

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=55.77τ2+2126.58τ2454.36+272τ55.77τ2+2126.58τ3887.71+272τ=055.77τ3+2126.58τ23887.71τ+272τ=0

On solving,

  τ=1.678,0.073,39.88

Considering positive value of temperature τ=1.678

Hence,

  τ=TT0=T100+273.15=1.678T=626.1457K

(t)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the wateris to be calculated when some amount of heat is given to the to the water.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(t)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=706.37K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for water in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DH2O3.471.45000.121

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=3.470×373.15×(τ1)+1.450×1032373.152(τ21)+03×373.153(τ31)+0.121×105373.15×(τ1τ)373.15TΔCPRdT=1294.83(τ1)+100.95(τ21)+32.43(τ1τ)373.15TΔCPRdT=1294.83τ1294.83+100.95τ2100.95+32.4332.43τ373.15TΔCPRdT=100.95τ2+1294.83τ1363.3532.43τ

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=100.95τ2+1294.83τ1363.3532.43τ100.95τ2+1294.83τ2796.732.43τ=0100.95τ3+1294.83τ22796.7τ32.43τ=0

On solving,

  τ=1.893,0.011,14.708

Considering positive value of temperature τ=1.893

Hence,

  τ=TT0=T100+273.15=1.893T=706.37K

(u)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the nitrogen is to be calculated when some amount of heat is given to the to the nitrogen.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(u)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=770.55K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for nitrogen in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DN23.2800.59300.040

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=3.280×373.15×(τ1)+0.593×1032373.152(τ21)+03×373.153(τ31)+0.040×105373.15×(τ1τ)373.15TΔCPRdT=1223.93(τ1)+41.29(τ21)+10.72(τ1τ)373.15TΔCPRdT=1223.93τ1223.93+41.29τ241.29+10.7210.72τ373.15TΔCPRdT=41.29τ2+1223.93τ1254.510.72τ

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=41.29τ2+1223.93τ1254.510.72τ41.29τ2+1223.93τ2697.8510.72τ=041.29τ3+1223.93τ22697.85τ10.72τ=0

On solving,

  τ=2.065,0.003,31.703

Considering positive value of temperature τ=2.065

Hence,

  τ=TT0=T100+273.15=2.065T=770.55K

(v)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the hydrogen cyanide is to be calculated when some amount of heat is given to the to the hydrogen cyanide.

Concept Introduction:

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT.     ...(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)   .....(2)

Where τ=TT0

(v)

Expert Solution
Check Mark

Answer to Problem 4.3P

  T=654.13K

Explanation of Solution

Given information:

  Q= 12 kJ/mol

  initial temperature(T1) =1000C. So,

  T0=1000CT0=1000C+273.15=373.15K

  T=?oC=T+273.15K

Values of above constants for hydrogen cyanide in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DHCN4.7361.35900.725

  gas constant R in SI unit is 8.314JmolK

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)373.15TΔCPRdT=4.736×373.15×(τ1)+1.359×1032373.152(τ21)+03×373.153(τ31)+0.725×105373.15×(τ1τ)373.15TΔCPRdT=1767.24(τ1)+94.61(τ21)194.29(τ1τ)373.15TΔCPRdT=1767.24τ1767.24+94.61τ294.61194.29+194.29τ373.15TΔCPRdT=94.61τ2+1767.24τ2056.14+194.29τ

Given that

  Q=12kJmolQ=12kJmol×1000 J1kJ=12000Jmol

Now from equation (1),

  12000Jmol=RT0TΔ C PRdT12000Jmol=8.314JmolK×T0TΔCPRdT1443.349K=T0TΔCPRdT

Put in abovE

  1443.349K=94.61τ2+1767.24τ2056.14+194.29τ94.61τ2+1767.24τ3499.49+194.29τ=094.61τ2+1767.24τ3499.49τ+194.29τ=0

On solving,

  τ=1.753,0.057,20.49

Considering positive value of temperature τ=1.753

Hence,

  τ=TT0=T100+273.15=1.753T=654.13K

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
9.4. A PID temperature controller is at steady state with an output pressure of 9 psig. The set point and process temperature are initially the same. At time = 0, the set point is increased at the rate of 0.5°F/min. The motion of the set point is in the direction of lower temperatures. If the current settings are PART 3 LINEAR CLOSED-LOOP SYSTEMS Ke = 2 psig/°F Ti = 1.25 min TD = 0.4 min plot the output pressure versus time.
9.6. A PI controller has the transfer function Determine the values of K, and T. 5s + 10 Ge S
9.5. The input & to a PI controller is shown in Fig. P9-5. Plot the output of the controller if Ke 2 and 0.50 min. - E 0.5 0 -0.5 0 FIGURE P9-5 2 4 t, min
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The