Casting molten metal is important in many industrial processes. Centrifugal casting is used for manufacturing pipes, bearings, and many other structures. A variety of sophisticated techniques have been invented, but the basic idea is as illustrated in Figure P4.35. A cylindrical enclosure is rotated rapidly and steadily about a horizontal axis. Molten metal is poured into the rotating cylinder and then cooled, forming the finished product. Turning the cylinder at a high rotation rate forces the solidifying metal strongly to the outside. Any bubbles are displaced toward the axis, so unwanted voids will not be present in the casting. Sometimes it is desirable to form a composite casting, such as for a bearing. Here a strong steel outer surface is poured and then inside it a lining of special low-friction metal. In some applications, a very strong metal is given a coating of corrosion-resistant metal. Centrifugal casting results in strong bonding between the layers. Suppose a copper sleeve of inner radius 2.10 cm and outer radius 2.20 cm is to be cast. To eliminate bubbles and give high structural integrity, the centripetal acceleration of each bit of metal should be at least 100g. What rate of rotation is required? State the answer in revolutions per minute.
Casting molten metal is important in many industrial processes. Centrifugal casting is used for manufacturing pipes, bearings, and many other structures. A variety of sophisticated techniques have been invented, but the basic idea is as illustrated in Figure P4.35. A cylindrical enclosure is rotated rapidly and steadily about a horizontal axis. Molten metal is poured into the rotating cylinder and then cooled, forming the finished product. Turning the cylinder at a high rotation rate forces the solidifying metal strongly to the outside. Any bubbles are displaced toward the axis, so unwanted voids will not be present in the casting. Sometimes it is desirable to form a composite casting, such as for a bearing. Here a strong steel outer surface is poured and then inside it a lining of special low-friction metal. In some applications, a very strong metal is given a coating of corrosion-resistant metal. Centrifugal casting results in strong bonding between the layers. Suppose a copper sleeve of inner radius 2.10 cm and outer radius 2.20 cm is to be cast. To eliminate bubbles and give high structural integrity, the centripetal acceleration of each bit of metal should be at least 100g. What rate of rotation is required? State the answer in revolutions per minute.
Solution Summary: The author explains how to determine the rate of rotation of cylindrical enclosure to avoid bubbles in casting.
Casting molten metal is important in many industrial processes. Centrifugal casting is used for manufacturing pipes, bearings, and many other structures. A variety of sophisticated techniques have been invented, but the basic idea is as illustrated in Figure P4.35. A cylindrical enclosure is rotated rapidly and steadily about a horizontal axis. Molten metal is poured into the rotating cylinder and then cooled, forming the finished product. Turning the cylinder at a high rotation rate forces the solidifying metal strongly to the outside. Any bubbles are displaced toward the axis, so unwanted voids will not be present in the casting. Sometimes it is desirable to form a composite casting, such as for a bearing. Here a strong steel outer surface is poured and then inside it a lining of special low-friction metal. In some applications, a very strong metal is given a coating of corrosion-resistant metal. Centrifugal casting results in strong bonding between the layers.
Suppose a copper sleeve of inner radius 2.10 cm and outer radius 2.20 cm is to be cast. To eliminate bubbles and give high structural integrity, the centripetal acceleration of each bit of metal should be at least 100g. What rate of rotation is required? State the answer in revolutions per minute.
A cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?
Light travels through a vacuum at a speed of 2.998 x 108m/s. Determine the speed of light in the following media:
crown glass (n = 1.52)
2.62 Collision. The engineer of a passenger train traveling at
25.0 m/s sights a freight train whose caboose is 200 m ahead on the
same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the
same direction as the passenger train. The engineer of the passenger
train immediately applies the brakes, causing a constant acceleration
of 0.100 m/s² in a direction opposite to the train's velocity, while the
freight train continues with constant speed. Take x = 0 at the location
of the front of the passenger train when the engineer applies the brakes.
(a) Will the cows nearby witness a collision? (b) If so, where will it take
place? (c) On a single graph, sketch the positions of the front of the pas-
senger train and the back of the freight train.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.