![EBK PHYSICAL CHEMISTRY](https://www.bartleby.com/isbn_cover_images/8220100477560/8220100477560_largeCoverImage.jpg)
Interpretation:
The units in equation 4.18-4.25 are to be shown consistent on both the sides of each equation.
Concept introduction:
The
![Check Mark](/static/check-mark.png)
Answer to Problem 4.31E
The units in equation 4.18-4.25 have been shown consistent on both the sides of each equation.
Explanation of Solution
The equation 4.18 is shown below.
Where,
•
•
•
•
The units of internal energy, temperature, entropy, pressure and volume is
Substitute the units of internal energy and entropy in the left hand side expression as shown below.
Thus, the unit obtained is Kelvin which is the unit of temperature. Thus, the units are consistent on the either side of the equation.
The equation 4.19 is shown below.
Where,
•
•
•
•
The units of internal energy and entropy can also be expressed in per molecule, the units of internal energy and entropy is
Substitute the units of internal energy and volume in the left hand side expression as shown below.
The units of internal energy joule can be substituted as
Thus, the unit obtained is Pascal which is the unit of pressure. Thus, the units are consistent on the either side of the equation.
The equation 4.20 is shown below.
Where,
•
•
•
•
The units of enthalpy, temperature, entropy, pressure and volume is
Substitute the units of enthalpy and entropy in the left hand side expression as shown below.
Thus, the unit obtained is Kelvin which is the unit of temperature. Thus, the units are consistent on the either side of the equation.
The equation 4.21 is shown below.
Where,
•
•
•
•
The units of enthalpy and entropy can also be expressed in per molecule, the units of enthalpy and entropy is
Substitute the units of enthalpy and pressure in the left hand side expression as shown below.
The units of enthalpy joule can be substituted as
Thus, the unit obtained is cubic meter which is the unit of volume. Thus, the units are consistent on the either side of the equation.
The equation 4.22 is shown below.
Where,
•
•
•
•
The units of Helmholtz energy, temperature, entropy, pressure and volume is
Substitute the units of Helmholtz energy and temperature in the left hand side expression as shown below.
Thus, the unit obtained is
The equation 4.23 is shown below.
Where,
•
•
•
•
The units of Helmholtz energy and entropy can also be expressed in per molecule, the units of Helmholtz energy and entropy is
Substitute the units of Helmholtz energy and volume in the left hand side expression as shown below.
The units of Helmholtz energy joule can be substituted as
Thus, the unit obtained is Pascal which is the unit of pressure. Thus, the units are consistent on the either side of the equation.
The equation 4.24 is shown below.
Where,
•
•
•
•
The units of Gibbs energy and entropy can also be expressed in per molecule, the units of Gibbs energy and entropy is
Substitute the units of Gibbs energy and temperature in the left hand side expression as shown below.
Thus, the unit obtained is
The equation 4.25 is shown below.
Where,
•
•
•
•
The units of Gibbs energy and entropy can also be expressed in per molecule, the units of Gibbs energy and entropy is
Substitute the units of Gibbs energy and pressure in the left hand side expression as shown below.
The units of Gibbs energy joule can be substituted as
Thus, the unit obtained is cubic meter which is the unit of volume. Thus, the units are consistent on the either side of the equation.
The units in equation 4.18-4.25 have been shown consistent on both the sides of each equation.
Want to see more full solutions like this?
Chapter 4 Solutions
EBK PHYSICAL CHEMISTRY
- What impact would adding twice as much Na2CO3 than required for stoichiometric quantities have on the quantity of product produced? Initial results attachedarrow_forwardGiven that a theoretical yield for isolating Calcium Carbonate in this experiment would be 100%. From that information and based on the results you obtained in this experiment, describe your success in the recovery of calcium carbonate and suggest two possible sources of error that would have caused you to not obtain 100% yield. Results are attached form experimentarrow_forward5) Calculate the flux of oxygen between the ocean and the atmosphere(2 pts), given that: (from Box 5.1, pg. 88 of your text): Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturated What is flux if the temperature is 10°C ? (2 pts) (Hint: use the same density in your calculations). Why do your calculated values make sense (or not) based on what you know about the relationship between gas solubility and temperature (1 pt)?arrow_forward
- The following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward(ME EX2) Prblms Can you please explain problems to me in detail, step by step? Thank you so much! If needed color code them for me.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780618562763/9780618562763_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)