
Concept explainers
(a)
Interpretation:
The Haworth projection (including with dash-wedge notation) for the given line structure of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane.
(b)
Interpretation:
The Haworth projection (including with dash-wedge notation) for the given line structure of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane.
(c)
Interpretation:
The line structure (including with dash-wedge notation) for the given Haworth projection of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane. To draw the line structure from its Haworth projection, view the molecule either from the top of the plane or from the bottom of the plane.
(d)
Interpretation:
The line structure (including with dash-wedge notation) for the given Haworth projection of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane. To draw the line structure from its Haworth projection, view the molecule either from the top of the plane or from the bottom of the plane.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
- please provide the structure for this problem, thank you!arrow_forwardDraw the Fischer projection from the skeletal structure shown below. HO OH OH OH OH H Q Drawing Atoms, Bonds and Rings Charges I ☐ T HO H H OH HO I CH2OH H OH Drag H OH -CH2OH CHO -COOH Undo Reset Remove Donearrow_forwardplease provide the structure for this problem, thank youarrow_forward
- presented by Morallen Lig Intermine the hand product for the given mution by adding atoms, bonds, nonhonding diarion panda скуль Step 3: Comp the draw the product Step 2: Agama workup Compithe 429 ملولةarrow_forwardReaction A 0,0arrow_forwardpresented by Morillon Leaning Predict the organic product for the min кусур HSC Adithane carved arnown to come than that to the condon slchroruis in acid in in aquishri with ноюarrow_forward
- 6.15PM Sun Mar 30 K Draw the major product of this reaction. Include any relevant stereochemistry. Ignore inorganic byproducts. Problem 1 of O H [PhзPCH2CH3]*C|¯ NaH Drawing > Q Atoms, Bonds and Draw or tap a nearrow_forward8:17 PM Sun Mar 30 Draw the major product of this reaction. Ignore inorganic byproducts. HSCH2CH2CH2SH, BF3 Probler Drawing Ato Bonds Clarrow_forwardpresented by Mr L How the coprion. (Il Done in no wraction, dew the starting redential) доarrow_forward
- 8:16 PM Sun Mar 30 K Draw the major product of this reaction. Ignore inorganic byproducts. Proble 1. CH3MgBr 2. H3O+ F Drawingarrow_forwardо но оarrow_forwardName the major organic product of the following action of 4-chloro-4-methyl-1-pentanol in neutral pollution 10+ Now the product. The product has a molecular formula f b. In a singly hain, the starting, material again converts into a secule with the molecular kormula CIO. but with comply Draw the major organic structure inhalationarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
