Concept explainers
(a)
Interpretation:
The Haworth projection (including with dash-wedge notation) for the given line structure of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane.
(b)
Interpretation:
The Haworth projection (including with dash-wedge notation) for the given line structure of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane.
(c)
Interpretation:
The line structure (including with dash-wedge notation) for the given Haworth projection of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane. To draw the line structure from its Haworth projection, view the molecule either from the top of the plane or from the bottom of the plane.
(d)
Interpretation:
The line structure (including with dash-wedge notation) for the given Haworth projection of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane. To draw the line structure from its Haworth projection, view the molecule either from the top of the plane or from the bottom of the plane.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
EBK GET READY FOR ORGANIC CHEMISTRY
- Which diene and dienophile would you choose to synthesize the following compound? Please provide a detailed explanation. Please include a drawing showing the mechanism of the synthesis. Please also explain why it is the correct diene and dienophile.arrow_forwardUsing the sketcher below, draw the structure of N-ethyldecylamine. Answer: 0 ୨୫) . 始 {n [ ]t ?arrow_forwardWhich of the following would you expect to be aromatic? Please provide a detailed explanation.arrow_forward
- Identify the characteristic signals that you would expect in the diagnostic region of an IR spectrum of each of the following compounds. a. H₂N b.arrow_forwardWhat is the lowest energy chair for the following cyclohexane? ' || || a. b. " " d.arrow_forwardAnswer the following questions using the below figure: Potential Energy ри Reaction Progress a. How many transition states occur in this reaction? b. How many intermediates occur in this reaction? c. Is this reaction spontaneous or nonspontaneous? d. Does this reaction have a positive or negative AG? e. Label the activation energy(ies).arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning