Concept explainers
(a)
Interpretation:
Calculate the final flame temperature of ethylene if ethylene is heated from initial temperature
Concept Introduction:
Since we need to calculate flame temperature, hence we will consider composition of product gas.
The transfer of heat is defined as:
.....(1)
Where
and
.....(2)
Where
(a)
Answer to Problem 4.21P
Explanation of Solution
Given information:
The standard enthalpies of formation at standard temperature
Values are:
The ethylene is burned with theoretical amount of air according to reaction:
.....(A)
Applying energy balance and considering steady state process,
Hence
Now,
The product gas has nitrogen, carbon dioxide and water gas if complete combustion takes place with theoretical amount of air.
The one mole of ethylene burns with three moles of air for the complete combustion and the ratio of Nitrogen: Oxygen in the air is
The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.
So, composition of product gas is:
To find value of constants in equation (2),
Values of above constants are given in appendix C table C.1 and noted down below:
So,
So, from equation (2)
Put the values
Now from equation (1),
Put in above
On solving,
Hence,
(b)
Interpretation:
Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature
Concept Introduction:
Since we need to calculate flame temperature, hence we will consider composition of product gas.
The transfer of heat is defined as:
.....(1)
Where
and
.....(2)
Where
(b)
Answer to Problem 4.21P
Explanation of Solution
Given information:
The standard enthalpies of formation at standard temperature
Values are:
The ethylene is burned with theoretical amount of air according to reaction:
.....(A)
Applying energy balance and considering steady state process,
Hence
Now,
For
The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.
The proportion of composition of nitrogen: oxygen in air is
To find value of constants in equation (2),
Values of above constants are given in appendix C table C.1 and noted down below:
So,
So, from equation (2)
Put the values
Now from equation (1),
Put in above
On solving,
Hence,
(c)
Interpretation:
Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature
Concept Introduction:
Since we need to calculate flame temperature, hence we will consider composition of product gas.
The transfer of heat is defined as:
.....(1)
Where
and
.....(2)
Where
(c)
Answer to Problem 4.21P
Explanation of Solution
Given information:
The standard enthalpies of formation at standard temperature
Values are:
The ethylene is burned with theoretical amount of air according to reaction:
.....(A)
Applying energy balance and considering steady state process,
Hence
Now,
For
The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.
The proportion of composition of nitrogen:oxygen in air is
To find value of constants in equation (2),
Values of above constants are given in appendix C table C.1 and noted down below:
So,
So, from equation (2)
Put the values
Now from equation (1),
Put in above
On solving,
Hence,
(d)
Interpretation:
Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature
Concept Introduction:
Since we need to calculate flame temperature, hence we will consider composition of product gas.
The transfer of heat is defined as:
.....(1)
Where
and
.....(2)
Where
(d)
Answer to Problem 4.21P
Explanation of Solution
Given information:
The standard enthalpies of formation at standard temperature
Values are:
The ethylene is burned with theoretical amount of air according to reaction:
.....(A)
Applying energy balance and considering steady state process,
Hence
Now,
For
The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.
The proportion of composition of nitrogen: oxygen in air is
To find value of constants in equation (2),
Values of above constants are given in appendix C table C.1 and noted down below:
So,
So, from equation (2)
Put the values
Now from equation (1),
Put in above
On solving,
Hence,
(e)
Interpretation:
Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature
Concept Introduction:
Since we need to calculate flame temperature, hence we will consider composition of product gas.
The transfer of heat is defined as:
.....(1)
Where
and
.....(2)
Where
(e)
Answer to Problem 4.21P
Explanation of Solution
Given information:
The standard enthalpies of formation at standard temperature
Values are:
The ethylene is burned with theoretical amount of air according to reaction:
.....(A)
Applying energy balance and considering steady state process,
Temperature of air is increased to
So,
For air, Values of constants used in equation (2) are given in appendix C table C.1 and noted down below:
Hence,
The number of moles of oxygen are therefore,
For
Now,
For
The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.
The proportion of composition of nitrogen:oxygen in air is
To find value of constants in equation (2),
So,
So, from equation (2)
Put the values
Put in above
On solving,
Hence,
(f)
Interpretation:
Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature
Concept Introduction:
Since we need to calculate flame temperature, hence we will consider composition of product gas.
The transfer of heat is defined as:
.....(1)
Where
and
.....(2)
Where
(f)
Answer to Problem 4.21P
Explanation of Solution
Given information:
The standard enthalpies of formation at standard temperature
Values are:
The ethylene is burned with theoretical amount of air according to reaction:
.....(A)
Applying energy balance and considering steady state process,
Hence
Now,
The product gas has nitrogen, carbon dioxide and water gas if complete combustion takes place with theoretical amount of air.
The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.
So, composition of product gas is:
To find value of constants in equation (2),
Values of above constants are given in appendix C table C.1 and noted down below:
So,
So, from equation (2)
Put the values
Now from equation (1),
Put in above
On solving,
Hence,
Want to see more full solutions like this?
Chapter 4 Solutions
Introduction to Chemical Engineering Thermodynamics
- Propane is burned completely with excess oxygen. The product gas contains 24.5 mole% CO2, 6.10% CO, 40.8% H2O, and 28.6% O2. (a) Calculate the percentage excess O2 fed to the furnace. (b) A student wrote the stoichiometric equation of the combustion of propane to form CO2 and CO as: 2C3H8 + 11O2 → 3CO2 + 3CO + 8H2O According to this equation, CO2 and CO should be in a ratio of 1/1 in the reaction products, but in the product gas of Part (a) they are in a ratio of 24.8/6.12. Is that result possible? (Hint: Yes.) Explain howarrow_forwardEnumerate the various methods for catalyst preparation and discuss vividly any one of the methodsarrow_forward2. Design a spherical tank, with a wall thickness of 2.5 cm that will ensure that no more than 45 kg of hydrogen will be lost per year. The tank, which will operate at 500 °C, can be made from nickel, aluminum, copper, or iron (BCC). The diffusion coefficient of hydrogen and the cost per pound for each available material is listed in Table 1. Material Do (m2/s) Q (J/mol) Cost ($/kg) Nickel 5.5 x 10-7 37.2 16.09 Aluminium 1.6 x 10-5 43.2 2.66 Copper 1.1 x 10-6 39.3 9.48 Iron (BCC) 1.2 × 10-7 15.1 0.45 Table 1: Diffusion data for hydrogen at 500 °C and the cost of material.arrow_forward
- A flash drum at 1.0 atm is separating a feed consisting of methanol and water. If the feed rate is 2000 kg/h and the feed is 45 wt % methanol, what are the values of L (kg/h), V (kg/h), yM, xM (weight fractions), and Tdrum if 35% by weight of the feed is vaporized? VLE data are in Table 2-8.arrow_forwardQ1.B. Make a comparison between current control PWM rectifier in the abc reference frame and dq reference frame.arrow_forwardstep by steparrow_forward
- The power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardstep by step pleasearrow_forwardstep by step pleasearrow_forward
- step by steparrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The