Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.17P
Interpretation Introduction
Interpretation:
The mole fraction, x, of the vapor exit stream should be calculated.
Concept Introduction:
Riedel equation is represented as follows:
Watson correction is represented as follows:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
15.6. We want to model the flow of fluid in a flow channel. For this we locate
three measuring points A, B, and C, 100 m apart along the flow channel.
We inject tracer upstream of point A, fluid flows past points A, B, and C
with the following results:
At A the tracer width is 2 m
At B the tracer width is 10 m
At C the tracer width is 14 m
What type of flow model would you try to use to represent this flow:
dispersion, convective, tanks-in-series, or none of these? Give a reason for
your answer.
PROBLEMS
A viscous liquid is to react while passing through a tubular reactor in which flow
is expected to follow the convection model. What conversion can we expect in
this reactor if plug flow in the reactor will give 80% conversion?
15.2. Reaction is second order.
15.4. Aqueous A (CAO
(p = 1000 kg/m³,
=
1 mol/liter) with physical properties close to water
= 10-9 m²/s) reacts by a first-order homogeneous
1
reaction (AR, k = 0.2 s¹) as it flows at 100 mm/s through a tubular
50 mm, L = 5 m). Find the conversion of A in the fluid
reactor (d,
leaving this reactor.
Chapter 4 Solutions
Introduction to Chemical Engineering Thermodynamics
Ch. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10P
Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Develop a general equation for the standard heat...Ch. 4 - Compute the standard heat of reaction for each of...Ch. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Ethylene gas and steam at 320°C and atmospheric...Ch. 4 - Prob. 4.36PCh. 4 - A fuel consisting of 75 mol-% methane and 25 mol-%...Ch. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - An equimolar mixture of nitrogen and acetylene...Ch. 4 - Prob. 4.42PCh. 4 - A gas consisting only of CO and N2 is made by...Ch. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Quantitative thermal analysis has been suggested...Ch. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - The oxidation of glucose provides the principal...Ch. 4 - Prob. 4.55P
Knowledge Booster
Similar questions
- Q2/ Derive Von-Karman Eqn which is given in lecture and derive velocity profile for T-flow through the pipe as: Where a radius and r is the distance from 1 V₁ = (V2)=0+ +In 1- EV the center.arrow_forwardplease.. please, provide me with sampling calculation (more details), this is the 4th sending for this questionarrow_forwardDate: 19 1972024 Q1: For a non-Newtonian power law fluid, r=K (du/dr)" flowing in a tube in laminar manner subjected to a constant heat flux at the wall and having constant thermo physical properties. A- Find an expression for the velocity profile. B- Using n=2, conduct a suitable heat balance and try to obtain an expression for the heat transfer coefficient between the wall and the fluid.arrow_forward
- Ge =S(zijde obying Vanderwoolseg. show that RT гиф Lud = bb - RTV v-b + Lu Rī P(V-b) then find (P.) (TP, a, b,v) (s 3. ↓ tb t looc lobar S 8 0.5m³arrow_forwardStudent Question 67% D 三 Copy ID Determine the relative amounts (in terms of volume fractions) for a 67.0 wt% Pb-33.0 wt% Mg alloy at 425°C. The densities of lead and magnesium at 425°C are given as follows: PPb 10.96 g/cm³ = PMg 1.68 g/cm³ You may also want to use Animated Figure 9.20. Va = 0.4558 0.5442 VMg2Pb Your Submission Rating Sub-Subject Thesis/Dissertation, Research, Or Independent Study In Mechanical Engineering Step-by-step A Step 1 of 2 Given that. Topic N/Aarrow_forwardAdvance Statistics and DOL 01 (90%): Use the below experimental regions information and the data given in the below table to run and analyze the Yield of reactor presented below: Factors; Response: Temperature (°C): (150, 250) Pressure (bar): (1.5, 10) Flow Rate (L/min): (10, 30) Yield (%): Hypothetical yield data for each combination of factors. Use 2 factorial, full factorial, Central Composite, and Box-Behnken designs to construct the design tables that are required to run the experiments (real and coded). Then analyze the results using MINITAB software to show the regression model for you think is the Yield and most effective parameters and interaction. Which design do the giving best model fitting based on your results? (Note; use 3 center point). 02 (10%): Use the Hypothetical yield data shown in the below Table to find the variance and standard deviation and the median. Hypothetical Yield Data Run Temperature (°C) Pressure (bar) Flow Rate (L/min) Yield (%) 1 150 1 10 65 2 150 1…arrow_forward
- Derive the formula boundary-s layer, thickness 5x Rexarrow_forwardQ2] The reaction AR + S is irreversible and first order. It is conducted in a PFR with 50 tubes, each with 0.5 in diameter and 1.0 m of height. 200 kg/h of reactant A (MW-80 g/gmol) with 30% inert is introduced at a pressure of 50 atm at 500°C. The output conversion is 80%. Calculate the average residence time.arrow_forwardplease, provide me with right resultsarrow_forward
- Ex. HW. A vertical glass tube, 2cm ID & 5m long in heated uniformly over its length. The water enter at (200-204 C) & 68.9 bar calculated the pressure drop if the flowrate 0.15 Kg/s & the power applied as a heat to the fluid is 100KW using the homogeneous model. Given that enthalpy at inlet temp.=0.87MJ/Kg, enthalpy saturation temp (285C)=1.26 MJ/Kg and μl=0.972*10-4 Ns/m2, μG=2.89*10-5 Ns/m2, UG=2.515*10-2m3/Kg and the change in UG over range of pressure=-4.45*10-4m3/Kg/bar.arrow_forward4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs at one end and air at a rate of 5 x 104 kgs in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs 1, 61.1 kgm³, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forwardand the viscosity of the water is 1.24 × 104 Nsm 2. Answer: Slug flow 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The