The molecular formula and name of reactant and product of given reaction has to be given. Also the amount of barium sulfide needed to form barium carbonate when it reacts with sodium carbonate has to be calculated. Concept introduction: A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation. In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between Ca ( OH ) 2 and Na 2 CO 3 in solution phase is given below. Ca(OH) 2(aq) +Na 2 CO 3(aq) → CaCO 3(s) +2NaOH (aq) This equation is helpful in understanding the reactants and products involved in the reaction. In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between Ca ( OH ) 2 and Na 2 CO 3 is given below. Ca 2+ (aq) +2OH - (aq) +2Na + (aq) +CO 3 2- (aq) → CaCO 3(s) +2Na + (aq) +2OH - (aq) The solid CaCO 3 is insoluble and it exist as solid in solution. In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions . The net ionic equation for the reaction between Ca ( OH ) 2 and Na 2 CO 3 is given below. As hydroxide ions and sodium ions are common in both the side it is neglected from the equation. Ca 2+ (aq) + CO 3 2- (aq) → CaCO 3(s) When two soluble solutions are mixed together, an insoluble salt formation occur so called precipitate. The precipitate obtained falls out of the solution and such reactions are called as precipitation reactions.
The molecular formula and name of reactant and product of given reaction has to be given. Also the amount of barium sulfide needed to form barium carbonate when it reacts with sodium carbonate has to be calculated. Concept introduction: A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation. In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between Ca ( OH ) 2 and Na 2 CO 3 in solution phase is given below. Ca(OH) 2(aq) +Na 2 CO 3(aq) → CaCO 3(s) +2NaOH (aq) This equation is helpful in understanding the reactants and products involved in the reaction. In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between Ca ( OH ) 2 and Na 2 CO 3 is given below. Ca 2+ (aq) +2OH - (aq) +2Na + (aq) +CO 3 2- (aq) → CaCO 3(s) +2Na + (aq) +2OH - (aq) The solid CaCO 3 is insoluble and it exist as solid in solution. In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions . The net ionic equation for the reaction between Ca ( OH ) 2 and Na 2 CO 3 is given below. As hydroxide ions and sodium ions are common in both the side it is neglected from the equation. Ca 2+ (aq) + CO 3 2- (aq) → CaCO 3(s) When two soluble solutions are mixed together, an insoluble salt formation occur so called precipitate. The precipitate obtained falls out of the solution and such reactions are called as precipitation reactions.
Solution Summary: The author explains that a chemical equation is the figurative representation of chemical reaction.
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Definition Definition Transformation of a chemical species into another chemical species. A chemical reaction consists of breaking existing bonds and forming new ones by changing the position of electrons. These reactions are best explained using a chemical equation.
Chapter 4, Problem 4.144QP
Interpretation Introduction
Interpretation:
The molecular formula and name of reactant and product of given reaction has to be given. Also the amount of barium sulfide needed to form barium carbonate when it reacts with sodium carbonate has to be calculated.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between Ca(OH)2 and Na2CO3 in solution phase is given below.
Ca(OH)2(aq)+Na2CO3(aq)→CaCO3(s)+2NaOH(aq)
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.
The solid CaCO3 is insoluble and it exist as solid in solution.
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below. As hydroxide ions and sodium ions are common in both the side it is neglected from the equation.
Ca2+(aq)+CO32-(aq)→CaCO3(s)
When two soluble solutions are mixed together, an insoluble salt formation occur so called precipitate. The precipitate obtained falls out of the solution and such reactions are called as precipitation reactions.
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ
Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions
about this system:
?
rise
Under these conditions, will the pressure of NOCI tend to rise or fall?
x10
fall
Is it possible to reverse this tendency by adding NO?
In other words, if you said the pressure of NOCI will tend to rise, can that
be changed to a tendency to fall by adding NO? Similarly, if you said the
pressure of NOCI will tend to fall, can that be changed to a tendency to
rise by adding NO?
yes
no
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of NO needed to reverse it.
Round your answer to 2 significant digits.
0.035 atm
✓
G
00.
18
Ar
Highlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area.
HO-
HO-
-0
OH
OH
HO
NG
HO-
HO-
OH
OH
OH
OH
NG
OH
€
+
Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn
it into the product of the reaction.
Also, write the name of the product molecule under the drawing area.
Name: ☐
H
C=0
X
H-
OH
HO-
H
HO-
-H
CH₂OH
×
Chapter 4 Solutions
General Chemistry - Standalone book (MindTap Course List)
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell