FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.11E
To determine
To sketch a converging-diverging channel.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Argon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 530°R and 150 ft/s,
respectively. At the exit, the temperature is 460°R and the pressure is 40 lb;/in?. The area of the exit is 0.0o085 ft?. Use the ideal gas
model with k = 1.67, and neglect potential energy effects.
Determine the velocity at the exit, in ft/s, and the mass flow rate, in Ib/s.
Step 1
Determine the velocity at the exit, in ft/s.
V2 = i
ft/s
A reversible non-flow, constant volume process decreases the internal energy by 315 kJ for 2.5 kg of gas for which R = 430 J/kg-K and k = 1.35. For the process, determine: a) the work; b) the heat; c) the change in total entropy. The initial temperature the gas is 205 °C.
Q4: A diffuser, has air entering at 100 kPa,
280 K, with a velocity of 200 m/s. The inlet
cross-sectional area of the diffuser is 100
mm2. At the exit, the area is 860 mm2, and
the exit velocity is 20 m/s. Determine the
exit pressure and temperature of the air.
Take Cp=1.005 KJ/kg.K
A: 280 K
B: 300 K
C: 320 K
OD: 340 K
Chapter 4 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (a) Answer these questions: ii. iii. i. State three (3) variables or parameters which remain unchanged over time in a steady flow system. State the main purpose for a compressor and a turbine. Write down the mass balance equation for a single-stream (one-inlet and one-outlet) steady-flow device in terms of density, area and velocity.arrow_forwardsteam at a temperature of 250 degree celsius has a specific volume of 1.5436 meter cube/ kg. what are the pressure, specific internal energy, enthalpy, and entropy?arrow_forwardanswer is provided and mass flow rate is 4.2 kg/secarrow_forward
- Q4: A diffuser, has air entering at 100 kPa, 280 K, with a velocity of 200 m/s. The inlet cross-sectional area of the diffuser is 100 mm2. At the exit, the area is 860 mm2, and the exit velocity is 20 m/s. Determine the exit pressure and temperature of the air. Take Cp=1.005 KJ/kg.K OA: 280 K OB: 300 K OC: 320 K D: 340 Karrow_forwardOxygen at the rate of 3 lb/min undergoes a reversible isobaric process during which its entropy changes -0.35 Btu/lb-ºR; V1=17.75 ft3and t1= 400 F. For both nonflow and steady flow (AP = 0, AK = 0) processes, compute (a) AU and AH, (b) W, (c) Q.arrow_forwarda. Air at 8 bar 100°C flows in a duct of 15 cm diameter at rate of 150 kg/min. It is throttled by upto 4 bar pressure. Determine the velocity of air after throttling and also show that enthalpy constant before and after throttling. b, Ans. 37.8 m/s 1. Determine the power required by a compressor designed to compress atmospheric through inlet area of 90 cm? with velocity of 50 m/s and leaves with velocity of 120 m/s from exit area of 5 cm?. Consider heat losses to environment to be 10% of power input to compressor. Ans. 50.4 kw C' Determine the power available from a steam turbine with following details; Steam flow rate = 1 kg/s Velocity at inlet and exit = 100 m/s and 150 m/s Enthalpy at inlet and exit = 2900 kJ/kg, 1600 k]/kg Change in potential energy may be assumed negligible. Ans. 1293.75 kw d. Determine the heat transfer in emptying of a rigid tank of 1 m² volume containing air at 3 bar and 27°C initially. Air is allowed to escape slowly by opening a valve until the pressure in…arrow_forward
- A certain SSSF, adiabatic control volume with single inflow and outflow streams has mass flow rate m(dot) = 7.5 kg/sec, and a specific entropy increase from inflow to outflow, se-şi = + 1.6 kJ/(K*kg). Determine the time-rate-of-change, net, of the entropy of the universe (control volume plus surroundings).arrow_forwardPlease show complete solutions with derivation of formulasarrow_forwardbasic thermodynamics questionarrow_forward
- 55 kmol per hour of air is compressed from P1 = 1 bar to P2 = 6.1 bar in a steady flow compressor. Delivered mechanical power is 98.9 kW. Temperatures and velocities are: T1 = 301K T2 = 520 K, u1 = 10.8 m/s and u2 = 3.8 m/s. Estimate the rate of heat transfer from the compressor in kW, 3 decimal values. Assume that Cp = 7/2R and that enthalpy is independent of pressure.arrow_forwardQ.6 A 75 ohm resistor carrying a constant current of 1 A is kept at a constant temperature of 27 °C by a stream of cooling water. In a time interval of 1s. What is the change in entropy of the universe? A OJ/K В 0.25J/K C C 0.25KJ/K D 0.19J/Karrow_forwardAir at 15 degree Celsius and 95 kpa enters the diffuser of a jet engine and steadily with a velocity of 250 m/s. The inlet area of the diffuser is 0.5 m^2. The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Find the mass flow of air, temperature of air leaving diffuser, power and rate of heat transfer within diffuser.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY