FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.74P
To determine
The rate of heat transfer between system and surroundings.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A rigid tank whose volume is 0.5 m³, initially containing ammonia at 20°C, 1.5 bar, is connected by a valve to a large supply line carrying
ammonia at 12 bar, 200°C. The valve is opened only as long as required to fill the tank with additional ammonia, bringing the total mass
of ammonia in the tank to 143.4 kg. Finally, the tank holds a two-phase liquid-vapor mixture at 20°C.
Determine the heat transfer to the ammonia in the tank from the surroundings, in kJ, ignoring kinetic and potential energy effects.
Qey =
i
181532.33
kJ
A rigid tank whose volume is 0.5 m³, initially containing ammonia at 20°C, 1.5 bar, is connected by a valve to a large supply line
carrying ammonia at 12 bar, 130°C. The valve is opened only as long as required to fill the tank with additional ammonia, bringing
the total mass of ammonia in the tank to 136.7 kg. Finally, the tank holds a two-phase liquid-vapor mixture at 20°C.
Determine the heat transfer to the ammonia in the tank from the surroundings, in kJ, ignoring kinetic and potential energy
effects.
lev =
eTextbook and Media
Hint
! kJ.
As shown in the figure, Refrigerant 22 enters the compressor of an air conditioning unit operating at steady state at 40oF, 80 lbf/in2 and is compressed to 160oF, 200 lbf/in2. The refrigerant exiting the compressor enters a condenser where energy transfer to air as a separate stream occurs, and the refrigerant exits as a liquid at 200 lbf/in2, 90oF. Air enters the condenser at 75oF, 14.7 lbf/in2 with a volumetric flow rate of 1500 ft3/min and exits at 110oF. Neglect stray heat transfer and kinetic and potential energy effects, and assume ideal gas behavior for the air.
Chapter 4 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As shown in the figure, Refrigerant 22 enters the compressor of an air conditioning unit operating at steady state at 40oF, 80 lbf/in2 and is compressed to 160oF, 200 lbf/in2. The refrigerant exiting the compressor enters a condenser where energy transfer to air as a separate stream occurs, and the refrigerant exits as a liquid at 200 lbf/in2, 90oF. Air enters the condenser at 70oF, 14.7 lbf/in2 with a volumetric flow rate of 1500 ft3/min and exits at 110oF. Neglect stray heat transfer and kinetic and potential energy effects, and assume ideal gas behavior for the air.arrow_forwardA rigid tank whose volume is 0.5 m, initially containing ammonia at 20°C, 1.5 bar, is connected by a valve to a large supply line carrying ammonia at 12 bar, 200°C. The valve is opened only as long as required to fill the tank with additional ammonia, bringing the total mass of ammonia in the tank to 136.7 kg. Finally, the tank holds a two-phase liquid-vapor mixture at 20°C. Determine the heat transfer to the ammonia in the tank from the surroundings, in kJ, ignoring kinetic and potential energy effects. Qcv = 221077.408 x kJarrow_forwardNonearrow_forward
- 4.13arrow_forwardAs shown in the figure, Refrigerant 22 enters the compressor of an air conditioning unit operating at steady state at 40°F, 80 lb/in² and is compressed to 160°F, 200 lb/in². The refrigerant exiting the compressor enters a condenser where energy transfer to air as a separate stream occurs, and the refrigerant exits as a liquid at 200 lb/in², 90°F. Air enters the condenser at 70°F, 14.7 lb-/in² with a volumetric flow rate of 1500 ft³/min and exits at 110°F. Neglect stray heat transfer and kinetic and potential energy effects, and assume ideal gas behavior for the air. Step 1 I₁-110°F Compressor 1+ R22 at MR22 = www www T₂-160°F P₁-200 lbfin.² Condenser Air at T₁ P4-14.71bfin.² (AV), 7₁-90°F P-200 lbf/in² T₁=40°F Pi-80 lbfin.² Determine the mass flow rate of refrigerant, in lb/min, and the compressor power, in horsepower. Determine the mass flow rate of refrigerant, in lb/min. lb/min T₂ <- 60°F T₁ = 90°F T₁ = 40°F Pa = Pa = 200 bin² P-801brin²arrow_forward4.40 WP Refrigerant 134a enters an air conditioner compressor at 4 bar, 20°C, and is compressed at steady state to 12 bar, 80°C. The volumetric flow rate of the refrigerant entering is 4 m³/min. The work input to the compressor is 60 kJ per kg of refrigerant flowing. Neglecting kinetic and potential energy effects, determine the heat transfer rate, in kW.arrow_forward
- 4. In part of a Carnot cycle, water undergoes two internally reversible processes shown in the image. Determine the heat transfer (in kJ/kg) for each process. pi =1 MPa, T2 = 400 °C, p2 = 2 MPa. %3D %3D 3.arrow_forward6.14arrow_forward= 95°F and m3 = 1.5 lb/s. Refrigerant 134a The figure belows shows three components of an air-conditioning system, where T3 flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady- state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. Air Tj = 535°R C,= 0.240 Btu/I6•°R Saturated liquid R-134a T3, ṁ3 Fan Wey = -0.2 hp Throttling valve 4 Saturated vapor P5=P4 P4 = 60 lbf/in.2 T = 528°R -Heat exchanger Modeling air as an ideal gas with constant c, = 0.240 Btu/lb· °R, determine the mass flow rate of the air, in Ib/s. i Ib/sarrow_forward
- The figure belows shows three components of an air-conditioning system, where 105°F and 4.5 lb/s. Refrigerant 134a flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady-state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. Modeling air as an ideal gas with constant cp = 0.240 Btu/lb · °R, determine the mass flow rate of the air, in lb/s.arrow_forwardSteady-state operating data are shown in the figure for an open feedwater heater.Heat transfer from the feedwater heater to its surroundings occurs at an average outer surfacetemperature of 50°C at a rate of 100 kW. Ignore the effects of motion and gravity and let T 0 =25°C, p0 = 1 bar. Determine(a) the ratio of the incoming mass flow rates, ?̇# /?̇ $ .(b) the rate of exergy destruction, in kW.arrow_forward4.30 Refrigerant 134a enters a heat exchanger operating ai steady state as a superheated vapour at 10 bars. 60°C. where it is cooled and condensed to saturated liquid at 10 bars. The mass flow rate of the refrigerant is 10 kg/min. A separate stream of air enters the heat exchanger at 37°C with a mass flow rate of 80 kg/min. Ignoring heat transfer from the outside of the heat exchanger and neglecting kinetic and potential energy effects, determine the exit air temperature, in °C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY