
(a)
Interpretation: The given net ionic equations are to be balanced and the elements that are oxidized and reduced are to be identified.
Concept introduction: Oxidation is a process in which there is a loss of electron during a reaction.
Reduction is a process in which there is a gain of electron during a reaction.
In ionic equation the individual ions of the constituent compound are shown.
The reaction is balanced when the number of atoms and charge are balanced on the both sides of the reaction.
To determine: The balanced net ionic equation and the identification of the elements that are oxidized and reduced.
(a)

Answer to Problem 4.104QP
Solution
The balanced net ionic equation is,
Sulfur is oxidized and manganese is reduced in the reaction.
Explanation of Solution
Explanation
The given net ionic reaction is,
The reaction is balanced when the number of atoms and charge are balanced on the both sides of the reaction.
To balance the above equation, first number of atoms will be balanced.
The number of oxygen atoms is balanced by adding the coefficient
Four hydrogen atoms are present on the right hand side of the reaction. To balance the hydrogen atoms, coefficient
The balanced net ionic equation is,
The common oxidation number of oxygen is
The net charge on
The oxidation number of manganese in
The oxidation number of manganese in
Substitute the value of oxidation number in the above expression.
The oxidation number of manganese in
The oxidation number of manganese in
The net charge on
The oxidation number of manganese in
Substitute the value of oxidation number in the above expression.
The oxidation number of manganese in
The oxidation number of manganese has decreased from
Thus, manganese is reduced.
The oxidation number of sulfur increases from
(b)
To determine: The balanced net ionic equation and the identification of the elements that are oxidized and reduced.
(b)

Answer to Problem 4.104QP
Solution
The balanced net ionic equation is,
Iodine is both oxidized and reduced in the reaction.
Explanation of Solution
Explanation
The given net ionic reaction is,
The reaction is balanced when the number of atoms and charge are balanced on the both sides of the reaction.
To balance the above equation, first oxygen atoms are balanced by adding the coefficient
Now, the hydrogen atoms are balanced by adding
The balanced net ionic equation is,
The common oxidation number of oxygen is
The net charge present on
The oxidation number of iodine atom in
The oxidation number of iodine atom in
Substitute the value of oxidation number in the above expression.
The oxidation number of iodine atom in
The oxidation number of iodine atom in
Therefore, iodine in iodate ion
(c)
To determine: The balanced net ionic equation and the identification of the elements that are oxidized and reduced.
(c)

Answer to Problem 4.104QP
Solution
The balanced net ionic equation is,
Manganese is oxidized and bismuth is reduced in the reaction.
Explanation of Solution
Explanation
The given equation is,
The common oxidation number of oxygen is
The net charge on
The oxidation number of manganese in
The oxidation number of manganese in
Substitute the value of oxidation number in the above expression.
The oxidation number of manganese in
The oxidation number of manganese in
So, the oxidation number of manganese has increased from
The oxidation number of bismuth is calculated by the formula,
The oxidation number of bismuth is assumed to be
The net charge in
Substitute the value of oxidation number in the above expression.
The oxidation number of bismuth in
The oxidation number of bismuth in
So, the oxidation number is decreasing from
The above equation is not balanced.
To balance the equation, coefficient
First oxygen atoms are balanced by adding the coefficient
Then, hydrogen atoms are balanced by adding the coefficient
The balanced net ionic equation is,
Therefore, manganese is oxidized and bismuth is reduced in the reaction.
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry: The Science in Context (Fifth Edition)
- CH, CH CH₂ CH₂ Phytyl side chain 5. What is the expected order of elution of compounds A-D below from a chromatography column packed with silica gel, eluting with hexane/ethyl acetate? C D OHarrow_forwardPlease analze my gel electrophoresis column of the VRK1 kinase (MW: 39.71 kDa). Attached is the following image for the order of column wells and my gel.arrow_forward2.0arrow_forward
- Write the electron configuration of an atom of the element highlighted in this outline of the Periodic Table: 1 23 4 5 6 7 He Ne Ar Kr Xe Rn Hint: you do not need to know the name or symbol of the highlighted element! ☐arrow_forwardCompare these chromatograms of three anti-psychotic drugs done by HPLC and SFC. Why is there the difference in separation time for SFC versus HPLC? Hint, use the Van Deemter plot as a guide in answering this question. Why, fundamentally, would you expect a faster separation for SFC than HPLC, in general?arrow_forwardA certain inorganic cation has an electrophoretic mobility of 5.27 x 10-4 cm2s-1V-1. The same ion has a diffusion coefficient of 9.5 x 10-6cm2s-1. If this ion is separated from cations by CZE with a 75cm capillary, what is the expected plate count, N, at an applied voltage of 15.0kV? Under these separation conditions, the electroosmotic flow rate was 0.85mm s-1 toward the cathode. If the detector was 50.0cm from the injection end of the capillary, how long would it take in minutes for the analyte cation to reach the detector after the field was applied?arrow_forward
- 2.arrow_forwardPlease solve for the following Electrochemistry that occursarrow_forwardCommercial bleach contains either chlorine or oxygen as an active ingredient. A commercial oxygenated bleach is much safer to handle and less likely to ruin your clothes. It is possible to determine the amount of active ingredient in an oxygenated bleach product by performing a redox titration. The balance reaction for such a titration is: 6H+ +5H2O2 +2MnO4- à 5O2 + 2Mn2+ + 8H2O If you performed the following procedure: “First, dilute the Seventh Generation Non-Chlorine Bleach by pipetting 10 mL of bleach in a 100 mL volumetric flask and filling the flask to the mark with distilled water. Next, pipet 10 mL of the diluted bleach solution into a 250 mL Erlenmeyer flask and add 20 mL of 1.0 M H2SO4 to the flask. This solution should be titrated with 0.0100 M KMnO4 solution.” It took 18.47mL of the KMnO4 to reach the endpoint on average. What was the concentration of H2O2 in the original bleach solution in weight % assuming the density of bleach is 1g/mL?arrow_forward
- 10.arrow_forwardProper care of pH electrodes: Why can you not store a pH electrode in distilled water? What must you instead store it in? Why?arrow_forwardWrite the electron configuration of an atom of the element highlighted in this outline of the Periodic Table: 1 23 4 569 7 He Ne Ar Kr Xe Rn Hint: you do not need to know the name or symbol of the highlighted element! §arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





