Concept explainers
A 120-volt branch circuit supplies a resistive heating load of 10 amperes. The distance from the panel to the heater is approximately 140 ft. Calculate the voltage drop using (a) 14 AWG, (b) 12 AWG, (c) 10 AWG, (d) 8 AWG copper conductors. See 210.19(A), Informational Note No. 4 and 215.2(A)(1), Informational Note No. 2.
(a)
Find the value of voltage drop in 14 AWG copper wire.
Answer to Problem 35R
The obtained value of voltage drop in 14 AWG copper wire is
Explanation of Solution
Given data:
Supply voltage is 120-volt.
Current is 10 A.
The distance between panel and heater is approximately 140 ft.
14 AWG copper conductor.
Calculation:
Write the expression for voltage drop in single-phase circuit.
Here,
K is the approximate resistance in ohms per circular-mil foot at
I is the current, and
CMA is cross-sectional area of the conductors.
Modify Equation (1) for 14 AWG copper wire.
Refer TABLE 4-7 in the textbook for circular mil area (CMA) for many of the common conductors.
The value of CMA for 14 AWG is 4110.
Substitute
Conclusion:
Thus, the obtained value of the voltage drop for 14 AWG copper wire is
(b)
Find the value of voltage drop in 12 AWG copper wire.
Answer to Problem 35R
The obtained value of the voltage drop for 12 AWG copper wire is
Explanation of Solution
Given data:
12 AWG copper conductor.
Calculation:
Modify Equation (1) for 12 AWG copper wire.
Refer TABLE 4-7 in the textbook for circular mil area (CMA) for many of the common conductors.
The value of CMA for 12 AWG is 6530.
Substitute
Conclusion:
Thus, the obtained value of voltage drop for 12 AWG copper wire is
(c)
Find the value of voltage drop in 10 AWG copper wire.
Answer to Problem 35R
The obtained value of voltage drop for 10 AWG copper wire is
Explanation of Solution
Given data:
10 AWG copper conductor.
Calculation:
Modify Equation (1) for 10 AWG copper wire.
Refer TABLE 4-7 in the textbook for circular mil area (CMA) for many of the common conductors.
The value of CMA for 10 AWG is 10,380.
Substitute
Conclusion:
Thus, the obtained value of voltage drop for 10 AWG copper wire is
(d)
Find the value of the voltage drop in 8 AWG copper wire.
Answer to Problem 35R
The obtained value of the voltage drop for 8 AWG copper wire is
Explanation of Solution
Given data:
8 AWG copper conductor.
Calculation:
Modify Equation (1) for 8 AWG copper wire.
Refer TABLE 4-7 in the textbook for circular mil area (CMA) for many of the common conductors.
The value of CMA for 8 AWG is 16,510.
Substitute
Conclusion:
Thus, the obtained value of the voltage drop for 8 AWG copper wire is
Want to see more full solutions like this?
Chapter 4 Solutions
Electrical Wiring Residential
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Vector Mechanics For Engineers
Modern Database Management
Java: An Introduction to Problem Solving and Programming (8th Edition)
Starting Out with C++: Early Objects (9th Edition)
Introduction To Programming Using Visual Basic (11th Edition)
- Solve by Pen and Paper not using chatgpt or AIarrow_forwardYou just got a job at Shin-Etsu Chemical growing Si crystals with different dopants. Howmuch Ga needs to be added to 800 kg of Si melt to achieve a 5-10 Ω.cm (measured at midheight) Si CZ crystal with the following characteristics: height: 7 ft, width: 12 inchesdiameter. Assume, angular rotation 10 RPM, melt viscosity 0.1 poise, pull velocity 2mm/min.a. Generate a plot of the doping distribution throughout the length of the crystal (CGa vs. fs ).b. If a second crystal were to be pulled out of the melt without replenishment of silicon nordopant what would be the average resistivity of this crystal (or resistivity at mid height)arrow_forwardDO NOT USE AI OR CHAT GPT NEED HANDWRITTEN SOLUTIONarrow_forward
- 7. Complete the following problems for the circuit below. (a) When VDD = 120V, What is the voltage drop V1 across the 7Ω resistor? (b) If the voltage source VDD is set to obtain I1 = 2A, find the value of VDD. (c) If I1 = 100A, What is the value of I2arrow_forwarda) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 =x12x2 + 9u1 dt dx2 =x1+x3+3u2 dt dx3 = 4x1 +5x2 - 12x3 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forwardCircuit Logic. Match each statement to the proper circuit. All circuits have been drawn with a light (L) to represent the load, whether it is a motor, bell, light, or any other load. In addition, each switch is illustrated as a pushbutton whether it is a maintained switch, momentary contact switch, pushbutton, switch-on target, or any other type of switch.arrow_forward
- a) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 = 4x1 = x2 dt dx2 =-3x12x2 +U1 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forwardmatch each statement to the proper circuit. All circuits have been drawn with a light (L) to represent the load, whether it is a motor, bell, light or any other load. In addition, each switch is illustrated as a push button whether it is maintained switch, momentary contact switch, pushbutton, switch-on target, or any other type of switch.arrow_forwarda) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 =-7x1 + x2 + 5u1 dt dx2 =-11x1+x3 + 2u1 dt dx3 = -8x16u1 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forward
- Question 2 (20 points) a) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 dt =x1- 2x2 dx2 = 3x1 - 4x2 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forwardStuck on the question. Please do not use AI, it will get the answer wrong.arrow_forwardConsider a particle confined in an infinite potential well as shown below and its wave function Solve the following problems. is derived as √(x) = A sin (TA), and energy E= H U 0 U=0 a x πλη 2ma² €30 (iii) Calculate the value of A. [Hint: The probability of finding the particle in 0arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT