Concept explainers
A 120-volt branch circuit supplies a resistive heating load of 10 amperes. The distance from the panel to the heater is approximately 140 ft. Calculate the voltage drop using (a) 14 AWG, (b) 12 AWG, (c) 10 AWG, (d) 8 AWG copper conductors. See 210.19(A), Informational Note No. 4 and 215.2(A)(1), Informational Note No. 2.
(a)
Find the value of voltage drop in 14 AWG copper wire.
Answer to Problem 35R
The obtained value of voltage drop in 14 AWG copper wire is
Explanation of Solution
Given data:
Supply voltage is 120-volt.
Current is 10 A.
The distance between panel and heater is approximately 140 ft.
14 AWG copper conductor.
Calculation:
Write the expression for voltage drop in single-phase circuit.
Here,
K is the approximate resistance in ohms per circular-mil foot at
I is the current, and
CMA is cross-sectional area of the conductors.
Modify Equation (1) for 14 AWG copper wire.
Refer TABLE 4-7 in the textbook for circular mil area (CMA) for many of the common conductors.
The value of CMA for 14 AWG is 4110.
Substitute
Conclusion:
Thus, the obtained value of the voltage drop for 14 AWG copper wire is
(b)
Find the value of voltage drop in 12 AWG copper wire.
Answer to Problem 35R
The obtained value of the voltage drop for 12 AWG copper wire is
Explanation of Solution
Given data:
12 AWG copper conductor.
Calculation:
Modify Equation (1) for 12 AWG copper wire.
Refer TABLE 4-7 in the textbook for circular mil area (CMA) for many of the common conductors.
The value of CMA for 12 AWG is 6530.
Substitute
Conclusion:
Thus, the obtained value of voltage drop for 12 AWG copper wire is
(c)
Find the value of voltage drop in 10 AWG copper wire.
Answer to Problem 35R
The obtained value of voltage drop for 10 AWG copper wire is
Explanation of Solution
Given data:
10 AWG copper conductor.
Calculation:
Modify Equation (1) for 10 AWG copper wire.
Refer TABLE 4-7 in the textbook for circular mil area (CMA) for many of the common conductors.
The value of CMA for 10 AWG is 10,380.
Substitute
Conclusion:
Thus, the obtained value of voltage drop for 10 AWG copper wire is
(d)
Find the value of the voltage drop in 8 AWG copper wire.
Answer to Problem 35R
The obtained value of the voltage drop for 8 AWG copper wire is
Explanation of Solution
Given data:
8 AWG copper conductor.
Calculation:
Modify Equation (1) for 8 AWG copper wire.
Refer TABLE 4-7 in the textbook for circular mil area (CMA) for many of the common conductors.
The value of CMA for 8 AWG is 16,510.
Substitute
Conclusion:
Thus, the obtained value of the voltage drop for 8 AWG copper wire is
Want to see more full solutions like this?
Chapter 4 Solutions
Electrical Wiring Residential
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Vector Mechanics For Engineers
Modern Database Management
Java: An Introduction to Problem Solving and Programming (8th Edition)
Starting Out with C++: Early Objects (9th Edition)
Introduction To Programming Using Visual Basic (11th Edition)
- A Digital Filter is described by the following. difference equation: Y(n)=0.5x(n) 0.5(n-2) - Find the transfer function ..arrow_forwardQ4) answer just two from three the following terms: A) Design ADC using the successive method if the Vmax=(3) volt, Vmin=(-2) volt, demonstrate the designing system for vin-1.2 volt.arrow_forward(a) For a voltage phasor V(jω) and a current phasor I(jω), give an expression for the complex power.(b)Give three examples of how real (average) power might be dissipated.(c)A time-domain voltage is defined by the expression v(t)= 5 cos(πt/3) V. When this is applied across an impedance Z = 4∠60° Ω, determine:(i)The instantaneous power.(ii)The average power.arrow_forward
- Consider the LTI system with the input x(t) = e^28(t) and the impulse response h(t) = e−²tu(t). a) Determine the Laplace transform of x(t) and h(t). (10 marks) b) Using convolutional property, determine the Laplace transform and the ROC for the output response y(t).arrow_forward解出R1和R2arrow_forwardAccording to the book the answers are m= 30 and n = 5 and number of switch blocks is 220arrow_forward
- find reactive power demand , capacitor bank provides and overcompenstationarrow_forward(A) Consider a communication system where the number of successful transsions out of 10 trials follows a binomial distribution. The success probability for each triat is 0,95, Let X be the random variable representing the number of successful transmissions. -Sketch the cumulative distribution function (CDF) of the distribution. 2- Find Skewness coefficients and check if the distribution is symmetrical or skewed to the right or left. 3- Find kurtosis coefficients, Check if the distribution is mesokurtic, leptokurtic or platykurtic. 4- Find the probability of getting at most eigh. successful transmissions. 5- Find the probability P(20 with a mean 2-1 calculate the probability that the noise is greater than 3 units.arrow_forwardQ4: (A) Find the mean of a random variable X if S f(x)= 2x 0 2 for 0arrow_forward(A) Suopces the current measurements in a strip of wire are normally distributed with ca-10(mA) and a varieocom (mA)² 1- What is the probability that a current measurement lies between 7.4 and 11.6 mA? 2-Drew the probability density function of the current distribution. (8) A factory produces light bulbs with a koown probability of P(D)-0.08 that & bulo is dalective. If a bulb is defective, the probability that the quality control test detects it is defective is P(TID)-0.90. Conversely, if a bulb is not defective, the probability that the test Telesly indicaton k as defective is P(TID)-0.05. calculate the probability that a light b is notually defective given that the test result is positive, F(DIT).arrow_forwardTitle: Modelling and Simulating Boost Converter Battery Charging Powered by PV Solar Question: I need a MATLAB/Simulink model for a Boost Converter used to charge a battery, powered by a PV solar panel. The model should include: 1. A PV solar panel as the input power source. 2. A Boost Converter circuit for voltage regulation. 3. A battery charging system. 4. Simulation results showing voltage, current, and efficiency of the system. Please provide the Simulink file and any necessary explanations.arrow_forwardPlease answerarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT