Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 33E
You’re an engineer working on Ares I, NASA’s replacement for the space shuttles. Performance specs call for a first-stage rocket capable of accelerating a total mass of 630 Mg vertically from rest to 7200 km/h in 2.0 min. You’re asked to determine the required engine thrust (force) and the force exerted on a 75-kg astronaut during liftoff. What do you report?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A small rocket for gathering weather data has a mass of 30
kg and generates 1500 N of thrust. On a windy day, the wind
exerts a 20 N horizontal force on the rocket. If the rocket is
launched straight up, what is the shape of its trajectory, and
by how much has it been deflected sideways when it
reaches a height of 1.0 km? Because the rocket goes much
higher than this, assume there’s no significant mass loss
during the first 1.0 km of flight.
A 1580 kg rocket is to be launched with an initial upward
speed of 59.0 m/s. In order to assist its engines, the
engineers will start it from rest on a ramp that rises 53°
above the horizontal (Figure 1). At the bottom, the ramp
turns upward and launches the rocket vertically. The
engines provide a constant forward thrust of 2000 N, and
friction with the ramp surface is a constant 500 N.
Figure
Rocket starts
here.
53°
< 1 of 1
Rocket is.
-launched
upward.
Part A
How far from the base of the ramp should the rocket start, as measured along the surface of the ramp?
Express your answer in meters to three significant figures.
IVE ΑΣΦ
d=
Submit Request Answer
< Return to Assignment
Provide Feedback
?
m
45. Review. Two constant forces act on an object of mass m =
QC 5.00 kg moving in the xy plane as shown in Figure P7.45.
Force F, is 25.0 N at 35.0°, and force F, is 42.0 N at 150°.
At time t = 0, the object is at the origin and has velocity
(4.00i2.50j m/s. (a) Express the two forces in unit-vector
other answers
notation. Use unit-vector notation for
your
(b) Find the total force exerted on the object. (c) Find the
object's acceleration. Now, considering the instant t = 3.00 s
find
(d)
velocity, (e) its position
(f) its kinetic energy
from m and (g) its
the
object's
kinetic
from
1500
energy
m .T. (h) What
conclusion can you
35.00
draw
x
m
by comparing the answers
to parts (f) and (g)?
Figure P7.45
Chapter 4 Solutions
Essential University Physics (3rd Edition)
Ch. 4.2 - A curved barrier lies on a horizontal tabletop, as...Ch. 4.2 - A nonzero net force acts on an object. Which of...Ch. 4.4 - A popular childrens book explains the...Ch. 4.5 - For each of the following situations, would the...Ch. 4.6 - The figure shows two blocks with two forces acting...Ch. 4.6 - (1) Would the answer to (a) in Example 4.5 change...Ch. 4 - Distinguish the Aristotelian and Galilean/New...Ch. 4 - A ball bounces off a wall with the same speed it...Ch. 4 - We often use the term inertia to describe human...Ch. 4 - Does a body necessarily move in the direction of...
Ch. 4 - A truck crashes into a stalled car. A student...Ch. 4 - A barefoot astronaut kicks a ball, hard, across a...Ch. 4 - The surface gravity on Jupiters moon Io is...Ch. 4 - In paddling a canoe, you push water backward with...Ch. 4 - Is it possible for a nonzero net force to act on...Ch. 4 - As your plane accelerates down the runway, you...Ch. 4 - A driver tells passengers to buckle their...Ch. 4 - If you cut a spring in half, is the spring...Ch. 4 - As youre sitting on a chair, theres a...Ch. 4 - Section 4.2 Newtons First and Second Laws A subway...Ch. 4 - A 61-Mg railroad locomotive can exert a 0.12-MN...Ch. 4 - A small plane accelerates down the runway at 7.2...Ch. 4 - A car leaves the road traveling at 110 km/h and...Ch. 4 - By how much does the force required to stop a car...Ch. 4 - Kinesin is a motor protein responsible for moving...Ch. 4 - Starting from rest and undergoing constant...Ch. 4 - In an egg-dropping contest, a student encases an...Ch. 4 - In a front-end collision, a 1300-kg car with...Ch. 4 - Show that the units of acceleration can be written...Ch. 4 - Your spaceship crashes on one of the Suns planets....Ch. 4 - Your friend can barely lift a 35-kg concrete block...Ch. 4 - A cereal box says net weight 340 grams. Whats the...Ch. 4 - Youre a safely engineer for a bridge spanning the...Ch. 4 - The gravitational acceleration at the...Ch. 4 - A 50-kg parachutist descends at a steady 40 km/h....Ch. 4 - A 930-kg motorboat accelerates away from a dock at...Ch. 4 - An elevator accelerates downward at 2.4 m/s2. What...Ch. 4 - At 560 metric tons, the Airbus A-380 is the worlds...Ch. 4 - Youre an engineer working on Ares I, NASAs...Ch. 4 - You slop into an elevator, and it accelerates to a...Ch. 4 - What upward gravitational force does a 5600-kg...Ch. 4 - Your friends mass is 65 kg. If she jumps off a...Ch. 4 - What force is necessary to stretch a spring 48 cm,...Ch. 4 - A 35-N force is applied to a spring with spring...Ch. 4 - A spring with spring constant k = 340 N/m is used...Ch. 4 - A 1.25-kg object is moving in the x-direction at...Ch. 4 - An airplane encounters sudden turbulence, and you...Ch. 4 - A 74-kg tree surgeon rides a cherry picker lift to...Ch. 4 - A dancer executes a vertical jump during which the...Ch. 4 - Find expressions for the force needed to bring an...Ch. 4 - An elevator moves upward at 5.2 m/s. Whats its...Ch. 4 - A 2.50-kg object is moving along the x-axis at...Ch. 4 - Blocks of 1.0, 2.0, and 3.0 kg are lined up on a...Ch. 4 - A child pulls an 11-kg wagon with a horizontal...Ch. 4 - Biophysicists use an arrangement of laser beams...Ch. 4 - A force F is applied to a spring of spring...Ch. 4 - A 22(M)-kg airplane pulls two gliders, the first...Ch. 4 - A biologist is studying the growth of rats on the...Ch. 4 - An elastic towrope has spring constant 1300 N/m....Ch. 4 - A 2.0-kg mass and a 3.0-kg mass are on a...Ch. 4 - Youre an automotive engineer designing the crumple...Ch. 4 - Frogs tongues dart out to catch insects, with...Ch. 4 - Two large crates, with masses 640 kg and 490 kg,...Ch. 4 - What force do the blades of a 4300-kg helicopter...Ch. 4 - What engine thrust (force) is needed to accelerate...Ch. 4 - Your engineering firm is asked to specify the...Ch. 4 - With its fuel tanks half full, an F-35A jet...Ch. 4 - Two springs have the same unstretched length but...Ch. 4 - Although we usually write Newtons second law for...Ch. 4 - A railroad car is being pulled beneath a grain...Ch. 4 - A block 20% more massive than you hangs from a...Ch. 4 - Youre asked to calibrate a device used to measure...Ch. 4 - A spider of mass ms drapes a silk thread of...Ch. 4 - Figure 4.27 shows vertical accelerometer data from...Ch. 4 - A hockey stick is in contact with a 165-g puck for...Ch. 4 - After parachuting through the Martian atmosphere,...Ch. 4 - Your airplane is caught in a brief, violent...Ch. 4 - Youre assessing the Engineered Material Arresting...Ch. 4 - Two masses are joined by a massless string. A 30-N...Ch. 4 - A mass M hangs from a uniform rope of length L and...Ch. 4 - Jerk is the rate of change of acceleration, and...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Examine the graph in Figure 6.3. Note that the growth rate increases slowly until the optimum is reached and th...
Microbiology with Diseases by Body System (5th Edition)
The light reactions of photosynthesis supply the Calvin cycle with A. light energy. B. CO2 and ATP. C. O2 and N...
Campbell Biology in Focus (2nd Edition)
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
Look at the relative positions of each pair of atoms listed here in the periodic table. How many core electrons...
Organic Chemistry (8th Edition)
You have generated three transgenic lines of maize that are resistant to the European corn borer, a significant...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 40-cm-diameter, 480 g beach ball is dropped with a 4.0 mg ant riding on the top. The ball experiences air resistance, but the ant does not. Take ρair = 1.2 kg/m3.What is the magnitude of the normal force exerted on the ant when the ball's speed is 3.0 m/s?arrow_forwardA7. Consider a spring-mass system as shown in the diagram, which consists of 1.0 kg block held by three identical springs with force constant k = 100 Nm', as shown in Fig. A7. Fig. A7 (a) Consider the block being displaced by a distance x m to the left. Determine the net force (both magnitude and direction) acting on the block by the springs. (b) The block is then released from rest. Show that the block performs simple harmonic motion, and determine the frequency of oscillation.arrow_forwardA 40,000-kg cargo plane on board an aircraft carrier is to deliver relief supplies to a far-flung city devastated by typhoon. After being shipped near the location, the plane is to take off assisted by a steam catapult with a force of 30,000 N that acts like a big slingshot for the plane to be successfully launched. The takeoff deck is only 250 m long and the plane engine generates a maximum thrust of 60,000 N. The plane needs an airspeed of 160 km/hr at the end of the runway to get airborne. Will the plane be able to takeoff or not? Support your answer with computations a. yes b. none of the choices c. no d. either yes or noarrow_forward
- You are part of a searchand- rescue mission that has been called out to look for a lost explorer. You’ve found the missing explorer, but you're separated from him by a 200-mm-high cliff and a 30-mm-wide raging river. To save his life, you need to get a 4.4 kgkg package of emergency supplies across the river. Unfortunately, you can't throw the package hard enough to make it across. Fortunately, you happen to have a 0.90 kgkg rocket intended for launching flares. Improvising quickly, you attach a sharpened stick to the front of the rocket, so that it will impale itself into the package of supplies, then fire the rocket at ground level toward the supplies. (Figure 1)arrow_forwardYou are a bully. You pin a 48 kg dweeb to a wall so that his feet aren't touching the ground. Your arm is extended so that it makes an angle 28 degrees with the horizontal. The dweeb's back is so sweaty with fear that there is no friction between his back and the wall. What is the magnitude of the force , in N, you must apply to keep the dweeb in equilibrium? (Use g = 10 m/s2) This scenario is represented schematically below. Unfortunately for you, years later the dweeb is your boss and he makes your life miserable. (Please answer to the fourth decimal place - i.e 12.3445)arrow_forwardA 1520-N crate is to be held in place on a ramp that rises at 30.0° above the horizontal (see figure). The massless rope attached to the crate makes a 22.0° angle above the surface of the ramp. The coefficients of friction between the crate and the surface of the ramp are uk = 0.450 and us = 0.650. The pulley has no appreciable mass or friction. What is the MAXIMUM weight w that can be used to hold this crate stationary on the ramp? w = ? Crate 22.0 Ramp 30,0arrow_forward
- A 50 cm diameter 400g beach ball is dropped with a 4mg ant riding the top. The ball experiences air resistance, but the ant does not; What is the magnitude of the normal force exerted on the ant when the ball's speed is 2m/s? (C= 0.5, p = 1.2 kg/m^3)arrow_forwardThe engines of a tanker broke down and the wind pushes the ship with a constant speed of 1.5 m / s straight towards a reef. When the boat is 500 m from the reef, the wind stops and the engineer manages to start the engines. The rudder is stuck, so the only option is to try to accelerate backwards. The mass of the ship and its cargo is 3.6 x 107 kg and the engines produce a net horizontal force of 8 x 104 N. The hull can withstand impacts at a speed of 0.2 m / s or less. The retarding force that the water exerts on the hull of the ship can be neglected. a) The equation of motion that corresponds to the horizontal component is? b)The acceleration of the ship is equal to? c) If the reef does not exist, the vessel, before stopping, travels what distance?arrow_forwardAs a science fair project, you want to launch an 700 g model rocket straight up and hit a horizontally moving target as it passes 26.0 m above the launch point. The rocket engine provides a constant thrust of 17.6 N. The target is approaching at a speed of 17.0 m/s. # 3 E D 80 F3 C 4 R F 888 V % 5 F5 T G ^ 6 B ▼ Part A At what horizontal distance between the target and the rocket should you launch? Express your answer with the appropriate units. FO Provide Feedback Y Value Submit MacBook Air H HA & 7 N F7 Request Answer U ** → 8 Units DII FB 1 M wwww. ? ( 9 K DD O :) O F10 P F11 1arrow_forward
- A desperate hiker has to think fast to help his friend who has fallen below him. Quickly, he ties a rope to a rock of mA = 405 kg and makes his way over the ledge (see the figure below). If the coefficient of static friction between the rock and the ground is H=0.348, and the mass of the hiker is ma= 70.1 kg, what is the maximum mass of the friend, mc, that the rock can hold so the hikers can then make their way up over the ledge? Assume the rope is parallel to the ground and the point where the rope passes over the ledge is frictionless. (ANS: 70.8 kg)arrow_forwardWhat is Fg and Fapparrow_forwardThe heaviest watermelon weighed in at 159 kg (350.5 lbs.) and was grown by Chris Kent (USA) of Sevierville, Tennessee. Chris releases the watermelon from rest from the top of a 150.0m tall building by a small crane. We neglect air resistance. If needed, use 9.80 m/s2 for the magnitude of g. What is the time it takes to hit the ground after being released and what will be the final impact velocity when it hits the ground? Report answers to 3 sig figs.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY