BIOCHEMISTRY W/1 TERM ACHEIVE ACCESS
BIOCHEMISTRY W/1 TERM ACHEIVE ACCESS
9th Edition
ISBN: 9781319425746
Author: BERG
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 27P
Interpretation Introduction

(a)

Interpretation:

The DNA Polymerase and RNA Polymerase from E. coli needs to be compared on the basis of the activated precursors.

Concept introduction:

DNA Polymerase is an enzyme that helps in the formation of DNA from deoxyribonucleotide, a unit structure of a DNA. This enzyme helps in replication of the DNA strand to form the double helical structure of the DNA. DNA Polymerase reads the existing strand of DNA and synthesizes the new strand which is a replica of the existing strand.

RNA Polymerase is an enzyme that initiates RNA synthesis from a DNA template. This RNA polymerase enzyme opens the double-stranded DNA to expose one strand of the nucleotide so that it can be used as the template for RNA Synthesis.

Interpretation Introduction

(b)

Interpretation:

The DNA Polymerase and RNA Polymerase from E. coli needs to be compared on the basis of

the direction of chain elongation.

Concept introduction:

DNA Polymerase is an enzyme that helps in the formation of DNA from deoxyribonucleotide, a unit structure of a DNA. This enzyme helps in replication of the DNA strand to form the double helical structure of the DNA. DNA Polymerase reads the existing strand of DNA and synthesizes the new strand which is a replica of the existing strand.

RNA Polymerase is an enzyme that initiates RNA synthesis from a DNA template. This RNA polymerase enzyme opens the double-stranded DNA to expose one strand of the nucleotide so that it can be used as the template for RNA Synthesis.

Interpretation Introduction

(c)

Interpretation:

The DNA Polymerase and RNA Polymerase from E.coli needs to be compared on the basis of

conservation of template.

Concept introduction:

DNA Polymerase is an enzyme that helps in the formation of DNA from deoxyribonucleotide, a unit structure of a DNA. This enzyme helps in replication of the DNA strand to form the double helical structure of the DNA. DNA Polymerase reads the existing strand of DNA and synthesizes the new strand which is a replica of the existing strand.

RNA Polymerase is an enzyme that initiates RNA synthesis from a DNA template. This RNA polymerase enzyme opens the double-stranded DNA to expose one strand of the nucleotide so that it can be used as the template for RNA Synthesis.

Interpretation Introduction

(d)

Interpretation:

The DNA Polymerase and RNA Polymerase from E.coli needs to be compared on the basis of

need for primer.

Concept introduction:

DNA Polymerase is an enzyme that helps in the formation of DNA from deoxyribonucleotide, a unit structure of a DNA. This enzyme helps in replication of the DNA strand to form the double helical structure of the DNA. DNA Polymerase reads the existing strand of DNA and synthesizes the new strand which is a replica of the existing strand.

RNA Polymerase is an enzyme that initiates RNA synthesis from a DNA template. This RNA polymerase enzyme opens the double-stranded DNA to expose one strand of the nucleotide so that it can be used as the template for RNA Synthesis.

Blurred answer
Students have asked these similar questions
carbons in each of the structures below. For instance, the central carbon of chloromethylbutane (pictured 3. A chiral carbon is a carbon that is single-bonded to four different types of groups. Identify the chiral above) is a chiral carbon. (Can you see how the groups attached to it are all chemically different?) In each of the chiral molecules below, identify all the carbons that are chiral carbons by drawing a circle around each one of them. (a) the carbohydrate glucose H O (b) the carbohydrate fructose CH₂OH 1C H-C-OH 3 HO-C-H 4 H-C-OH 5 H-C-OH 6CH₂OH D-Glucose (linear form) (c) the amino acid leucine O O H3C. HO H H- -OH CH 3 NH2 H- -OH CH₂OH OH
We always include controls in the Annexin-V-GFP/Propidium Iodide flow cytometric assay to study apoptosis. List four types of controls in this assay.  Why do we need these controls? Explain your answers.  After the flow assay, if we like to examine the morphology of the viable, early apoptotic and late apoptotic cells by confocal microscopy, what can we do and what are the expected results?
3. (2 points) Your lab partner accidentally used a pen instead of a pencil to mark the baseline and label the lanes of their TLC plate. Briefly (1-2 sentences for each point) describe (a) what would happen to the ink when you develop the TLC plate; and (b) how this would affect the experiment. 1
Knowledge Booster
Background pattern image
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning
Text book image
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Text book image
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
QCE Biology: Introduction to Gene Expression; Author: Atomi;https://www.youtube.com/watch?v=a7hydUtCIJk;License: Standard YouTube License, CC-BY