Excursions in Modern Mathematics (9th Edition)
9th Edition
ISBN: 9780134468372
Author: Peter Tannenbaum
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 26E
The small republic of Guayuru (see Example 4.11) consists of five states (A, B, C, D and E for short). The populations of the five states are shown in Table 4-33. Find the apportionment under Jefferson’s method of the
Table 4-33
State | A | B | C | D | E |
Population | 34,800 | 104,800 | 64,800 | 140,800 | 54,800 |
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(6) Prove that the image of a polygon in R², under an isometry, is congruent to the
original polygon.
The function f(x) is represented by the equation, f(x) = x³ + 8x² + x − 42.
Part A: Does f(x) have zeros located at -7, 2, -3? Explain without using technology and show all work.
Part B: Describe the end behavior of f(x) without using technology.
How does the graph of f(x) = (x − 9)4 – 3 compare to the parent function g(x) = x²?
Chapter 4 Solutions
Excursions in Modern Mathematics (9th Edition)
Ch. 4 - The Bandana Republic is a small country consisting...Ch. 4 - The Republic of Wadiya is a small country...Ch. 4 - The Scotia Metropolitan Area Rapid Transit Service...Ch. 4 - University Hospital has five major units:...Ch. 4 - The Republic of Tropicana is a small country...Ch. 4 - Tasmania State University is made up of five...Ch. 4 - There are 435 seats in the U.S. House of...Ch. 4 - There are 435 seats in the U.S. House of...Ch. 4 - The Interplanetary Federation of Fraternia...Ch. 4 - The small island nation of Margarita is made up of...
Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Happy Rivers County consists of three towns:...Ch. 4 - Plainville Hospital has three wings A, B, and C....Ch. 4 - The small nation of Fireland is divided into four...Ch. 4 - The Republic of Galatia is divided into four...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - The small republic of Guayuru see Example 4.11...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Round each number using the Huntington-Hill...Ch. 4 - Round each number using the Huntington-Hill...Ch. 4 - In the 2010 apportionment of the U.S. House of...Ch. 4 - In the 2010 apportionment of the U.S. House of...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A country consists of six states, with the states...Ch. 4 - A country consists of six states, with the states...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - At the time of the 2000 Census, Californias...Ch. 4 - At the time of the 2000 Census, Californias...Ch. 4 - This exercise refers to the apportionment of...Ch. 4 - This exercise refers to the apportionment of...Ch. 4 - Exercises 61 and 62 are based on the following...Ch. 4 - Exercises 61 and 62 are based on the following...Ch. 4 - This exercise comes in two parts. Read Part I and...Ch. 4 - This exercise comes in two parts. Read Part I and...Ch. 4 - The small island nation of Margarita consists of...Ch. 4 - Prob. 66ECh. 4 - Prob. 67ECh. 4 - Prob. 68ECh. 4 - Prob. 69ECh. 4 - Consider the problem of apportioning M seats...Ch. 4 - Prob. 71ECh. 4 - Prob. 72ECh. 4 - Lowndess Method. Exercises 73 and 74 refer to a...Ch. 4 - Prob. 74ECh. 4 - Prob. 75ECh. 4 - Explain why the Jeffersons method cannot produce...Ch. 4 - Explain why the Adamss method cannot produce a.the...Ch. 4 - Explain why the Websters method cannot produce...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Find the x-intercepts and the y-intercept of the graph of f(x) = (x − 5)(x − 2)(x − 1) without using technology. Show all work.arrow_forwardIn a volatile housing market, the overall value of a home can be modeled by V(x) = 415x² - 4600x + 200000, where V represents the value of the home and x represents each year after 2020. Part A: Find the vertex of V(x). Show all work. Part B: Interpret what the vertex means in terms of the value of the home.arrow_forwardShow all work to solve 3x² + 5x - 2 = 0.arrow_forward
- Two functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it. f(x) h(x) 21 5 4+ 3 f(x) = −2(x − 4)² +2 + -5 -4-3-2-1 1 2 3 4 5 -1 -2 -3 5arrow_forwardThe functions f(x) = (x + 1)² - 2 and g(x) = (x-2)² + 1 have been rewritten using the completing-the-square method. Apply your knowledge of functions in vertex form to determine if the vertex for each function is a minimum or a maximum and explain your reasoning.arrow_forwardTotal marks 15 3. (i) Let FRN Rm be a mapping and x = RN is a given point. Which of the following statements are true? Construct counterex- amples for any that are false. (a) If F is continuous at x then F is differentiable at x. (b) If F is differentiable at x then F is continuous at x. If F is differentiable at x then F has all 1st order partial (c) derivatives at x. (d) If all 1st order partial derivatives of F exist and are con- tinuous on RN then F is differentiable at x. [5 Marks] (ii) Let mappings F= (F1, F2) R³ → R² and G=(G1, G2) R² → R² : be defined by F₁ (x1, x2, x3) = x1 + x², G1(1, 2) = 31, F2(x1, x2, x3) = x² + x3, G2(1, 2)=sin(1+ y2). By using the chain rule, calculate the Jacobian matrix of the mapping GoF R3 R², i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)? (iii) [7 Marks] Give reasons why the mapping Go F is differentiable at (0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0). [3 Marks]arrow_forward
- 5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly Total marks 15 your answer. [5 Marks]arrow_forwardTotal marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]arrow_forward4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward
- 4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward3. Let f R2 R be a function. (i) Explain in your own words the relationship between the existence of all partial derivatives of f and differentiability of f at a point x = R². (ii) Consider R2 → R defined by : [5 Marks] f(x1, x2) = |2x1x2|1/2 Show that af af -(0,0) = 0 and -(0, 0) = 0, Jx1 მx2 but f is not differentiable at (0,0). [10 Marks]arrow_forward13) Consider the checkerboard arrangement shown below. Assume that the red checker can move diagonally upward, one square at a time, on the white squares. It may not enter a square if occupied by another checker, but may jump over it. How many routes are there for the red checker to the top of the board?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY