UNIVERSE (LOOSELEAF):STARS+GALAXIES
6th Edition
ISBN: 9781319115043
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 23Q
To determine
The semi-major axis of the spacecraft’s orbit and its orbital period.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Pluto's orbit around the Sun is highly elliptical compared to the planets in our Solar
System. It has a perihelion distance of 29.7 AU and an aphelion distance of 49.5 AU. a)
What is the semi-major axis of Pluto's orbit, in AU? b) What is Pluto's orbital period, in
Earth years?
Two planets orbit the same star in circular orbits. One orbits at a distance of 167AU and takes 1.5days to complete an orbit. The second planet orbits at a distance of 4.7 AU. How long does it take the the second planet to complete one orbit? answer in days.
One year on Planet AAA is 5 time the length of one earth year and it orbits its sun at an
average distance 4.38 AU. Planet ZZZ orbits the same sun at an average distance of
2.53 AU. Determine the length of one year on Planet ZZZ in earth days.
Chapter 4 Solutions
UNIVERSE (LOOSELEAF):STARS+GALAXIES
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - Prob. 23QCh. 4 - Prob. 24QCh. 4 - Prob. 25QCh. 4 - Prob. 26QCh. 4 - Prob. 27QCh. 4 - Prob. 28QCh. 4 - Prob. 29QCh. 4 - Prob. 30QCh. 4 - Prob. 31QCh. 4 - Prob. 32QCh. 4 - Prob. 33QCh. 4 - Prob. 34QCh. 4 - Prob. 35QCh. 4 - Prob. 36QCh. 4 - Prob. 37QCh. 4 - Prob. 38QCh. 4 - Prob. 39QCh. 4 - Prob. 40QCh. 4 - Prob. 41QCh. 4 - Prob. 42QCh. 4 - Prob. 43QCh. 4 - Prob. 44QCh. 4 - Prob. 45QCh. 4 - Prob. 46QCh. 4 - Prob. 47QCh. 4 - Prob. 48QCh. 4 - Prob. 49QCh. 4 - Prob. 50QCh. 4 - Prob. 51QCh. 4 - Prob. 52QCh. 4 - Prob. 53QCh. 4 - Prob. 54QCh. 4 - Prob. 55QCh. 4 - Prob. 56QCh. 4 - Prob. 57QCh. 4 - Prob. 58Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Comet Halley (Fig. P11.21) approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. (AU is the symbol for astronomical unit, where 1 AU = 1.50 1011 m is the mean EarthSun distance.) How far from the Sun will Halleys comet travel before it starts its return journey?arrow_forwardWhat is the semimajor axis of a circle of diameter 24 cm? What is its eccentricity?arrow_forwardWhich major planet has the largest . . . A. semimajor axis? B. average orbital speed around the Sun? C. orbital period around the Sun? D. eccentricity?arrow_forward
- Kepler’s third law says that the orbital period (in years) is proportional to the square root of the cube of the mean distance (in AU) from the Sun (Pa1.5) . For mean distances from 0.1 to 32 AU, calculate and plot a curve showing the expected Keplerian period. For each planet in our solar system, look up the mean distance from the Sun in AU and the orbital period in years and overplot these data on the theoretical Keplerian curve.arrow_forwardWhat is the average distance from the Sun (in astronomical units) of a planet with an orbital period of 45.66 years?arrow_forwardIf a planet has an average distance from the Sun of 2.0 AU, what is its orbital period?arrow_forward
- The distance between the center of the earth and the center of the ellipse = 40 000 km, the apogee distance is the five times of the perigee distance of a satellite in an elliptical orbit. Determine the following: 1- Semi-major axis of the elliptical orbit. 2- Orbit eccentricity 3- The apogee distance and perigee distance. 4. The orbital period 5. If the elliptical orbit is changed to be circular orbit, determine the orbital period for the new orbit (circular orbit)arrow_forwardQuestion 5 pleasearrow_forwardHelp fast.arrow_forward
- Consider an imaginary planet in our solar system at an average distance of25 AU from the Sun.(a) Calculate the orbital period of this planet. (b) This fictional planet has an orbital eccentricity of e = 0.4, calculatethe planet’s distance to the Sun at aphelion and perihelion. (c) Another imaginary planet in our solar system has a perihelion distanceof 12 AU from the Sun and an aphelion distance of 68 AU. Is theeccentricity of this new planet greater or less than the planet in theprevious question?arrow_forwardA new mystery planet is detected around our Sun. We measure its position relative to the Sun to be 2 AU at perihelion and 6 AU at aphelion. What is the semimajor axis of this planet's orbit (in AU)? With that information, what is the orbital period of that planet (in years)? If this planet has the same mass as Earth, how does the average force of gravity on the planet by the Sun compare with the average force of gravity on the Earth by the Sun? Please give a numerical ratio of the forces. (Hint: You can take the semimajor axis to represent the average position of the planets) 6:this is all one question with multiples steps. Thank youarrow_forwardThe planet Saturn has a mass of 5.68×10^26 kg and a radius of 58,200 km. Janus, a moon of Saturn, has a mass of 1.9×10^18 kg and it orbits Saturn a distance of 151,400 km from the center of Saturn. - How many hours does it take for Janus to orbit Saturn?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY