UNIVERSE (LOOSELEAF):STARS+GALAXIES
6th Edition
ISBN: 9781319115043
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 39Q
To determine
The stronger or weaker Sun’s gravitational pull be on earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain the tidal hypothesis.
Using high resolution adaptive optical techniques, observations of a nearby (9.5 pc) cool star of mass 0.2 solar masses indicate the presence of a small
rocky exoplanet in a circular orbit with a radius of 0.01 arcseconds. Using Kepler's Laws, estimate the period of the exoplanet's orbit in days.
select units A
Part B.
1. The table below shows the gravitational force between Saturn and some ring
particles that are at different distance from the planet. All of the particles have a
mass of 1 kg.
Table 1. Distance and Gravitational
Force Data
Distance of 1- Gravitational
kg Ring
Particle from
Force between
Saturn and 1-kg
ring particle (in
| 10,000 N)
2. Use the data in the table to make a
graph of the relationship between
distance and gravitational force. Label
your graph "Gravitational Force and
distance".
Center of
Saturn (in
| 1,000 km)
100
38
Hint: Put the data for distance on the
horizontal axis and the data for
gravitational force on the vertical axis.
120
26
130
22
150
17
3. Look at your graphed data, and
record in your answering sheet any
relationship you notice.
180
12
200
9.
220
8
250
280
O 5
Chapter 4 Solutions
UNIVERSE (LOOSELEAF):STARS+GALAXIES
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - Prob. 23QCh. 4 - Prob. 24QCh. 4 - Prob. 25QCh. 4 - Prob. 26QCh. 4 - Prob. 27QCh. 4 - Prob. 28QCh. 4 - Prob. 29QCh. 4 - Prob. 30QCh. 4 - Prob. 31QCh. 4 - Prob. 32QCh. 4 - Prob. 33QCh. 4 - Prob. 34QCh. 4 - Prob. 35QCh. 4 - Prob. 36QCh. 4 - Prob. 37QCh. 4 - Prob. 38QCh. 4 - Prob. 39QCh. 4 - Prob. 40QCh. 4 - Prob. 41QCh. 4 - Prob. 42QCh. 4 - Prob. 43QCh. 4 - Prob. 44QCh. 4 - Prob. 45QCh. 4 - Prob. 46QCh. 4 - Prob. 47QCh. 4 - Prob. 48QCh. 4 - Prob. 49QCh. 4 - Prob. 50QCh. 4 - Prob. 51QCh. 4 - Prob. 52QCh. 4 - Prob. 53QCh. 4 - Prob. 54QCh. 4 - Prob. 55QCh. 4 - Prob. 56QCh. 4 - Prob. 57QCh. 4 - Prob. 58Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Write down an expression for the gravitational filed strength of a planet of radius R and density p. Please use "*" for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-" signs as appropriate without the quotes). For Greek letters such as p and use rho and pi. For gravitational constant, please use G. Please use the "Display response" button to check you entered the answer you expect. Display responsearrow_forward. With the mass of earth as 5.9722×10 to the 24 kg. and the mass of the moon is 7.38 x10 to the 22kg.with a distance of 384790km a. what is the gravitational pull between the two objects? b. what happens to gravitational pull if you reduced the distance into 1/2?arrow_forwardKepler’s third law says that the orbital period (in years) is proportional to the square root of the cube of the mean distance (in AU) from the Sun (Pa1.5) . For mean distances from 0.1 to 32 AU, calculate and plot a curve showing the expected Keplerian period. For each planet in our solar system, look up the mean distance from the Sun in AU and the orbital period in years and overplot these data on the theoretical Keplerian curve.arrow_forward
- Why might Tycho Brahe have hesitated to hire Kepler? Why do you suppose he appointed Kepler his scientific heir? What is limited about Keplers third law P2 = a3, where P is the time in units of years a planet takes to orbit the Sun and a is the planets average distance from the Sun in units of AU? (Hint: Look at the units.) What does this tell you about Kepler and his laws?arrow_forwardCan I get help pleasearrow_forwardThe gravity on Mars is about 38% that of Earth's gravity. Let's say some cargo has a mass of 15 kg here on Earth. First, what would be the weight of that cargo in kilograms on Mars? Explain your answer. Second, what would be the mass of that cargo in kilograms on Mars? Explain your answer.arrow_forward
- A new mystery planet is detected around our Sun. We measure its position relative to the Sun to be 2 AU at perihelion and 6 AU at aphelion. What is the semimajor axis of this planet's orbit (in AU)? With that information, what is the orbital period of that planet (in years)? If this planet has the same mass as Earth, how does the average force of gravity on the planet by the Sun compare with the average force of gravity on the Earth by the Sun? Please give a numerical ratio of the forces. (Hint: You can take the semimajor axis to represent the average position of the planets) 6:this is all one question with multiples steps. Thank youarrow_forwardSomewhere far, far away on the other side of our galaxy, there is a new protoplanetary disk where two baby planetesimals are growing. Planetesimal A is currently 5x10° kg, and Planetesimal B is 2x105 kg. If these two planetesimals are 100 meters apart, what is the gravitational force between them? (Hint: the Universal Gravitational Constant (G) is 6.67x10-11 Nm²/kg²) Gm,m2 FG r2 Planetesimal A Planetesimal B 5 x 10°kg 2 x 105kg 100 metersarrow_forwardPlease answer the question and subquestions entirely. This is one single question. According to the official guideline, I can ask two subquestions! Thank you! 1) The radius of Planet Z is 3 times the radius of the Earth. It has the same density as the Earth. What is the gravitational acceleration at the surface of the planet? 29 m/s2 88 m/s2 270 m/s2 3.3 m/s2 a) Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit. 1.8 2.8 3.4 4.2 b) The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars? 9.8 m/s2 2.0 m/s2 3.9 m/s2 4.9 m/s2 none of thesearrow_forward
- After reducing the Planet Mass to 0.5, we observe the subsequent motions. How are the orbits of the Earth and Moon affected? Summarize observations and explain why. A website for the simulation shown in the image: https://phet.colorado.edu/sims/html/gravity-and-orbits/latest/gravity-and-orbits_en.htmlarrow_forwardYou land on a strange spherical planet X. As a curious physicist, you set out to make the following measurements: (1) you observe that planet X has no appreciable atmosphere, (2) you measure that if you throw a 0.25 kg stone vertically upwards with launch speed 10 m/s, it comes back to ground in 8 sec, and (3) you measure the equatorial circumference to be 250,000 km. What is the mass of planet X? [Hint: The value of g on the planet surface is related to its mass M and radius R by the formula g = GM/R2.] a) 9*1025 kg b) 2.3*1027 kg c) 6.9*1026 kg If you take your spaceship to a 10,000 km altitude circular orbit around planet X, what would be the orbital period of the spaceship? [Hint: Use the fact that the gravitational force causes the radial acceleration to calculate the orbital speed.] a) 4.89 hrs b) 9.78 hrs c) 19.56 hrsarrow_forwardAn asteroid is observed to be on a superior orbit with a synodic period of 466.6 days. What are the sidereal orbital period and semi-major axis of this asteroid? Choose the option below that most closely matches your answers. Select one: O a. Sidereal period = 1683 days and %3D semi-major = 2.7 AU O b. Sidereal period = 1683 days and semi-major axis = 4.8 AU O c. Sidereal period = 865 days and semi- major axis = 1.8 AU O d. Sidereal period = 426 day and semi- %3D major axis = 2.7 AU O e. Sidereal period = 1727 days and е. semi-major axis = 0.8 AUarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY