![Linear Algebra and Its Applications, Books a la Carte Edition Plus MyLab Math with Pearson eText -- Access Code Card (5th Edition)](https://www.bartleby.com/isbn_cover_images/9780321989925/9780321989925_largeCoverImage.gif)
Concept explainers
Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.) In parts (a)-(f), v1, ..., vp are
- a. The set of all linear combinations of v1, ..., vp is a vector space.
- b. If {v1, ..., vp−1} spans V, then S spans V.
- c. If {v1, ..., vp−1} is linearly independent, then so is S.
- d. If S is linearly independent, then S is a basis for V.
- e. If Span S = V, then some subset of S is a basis for V.
- f. If dim V = p and Span, S = V, then S cannot be linearly dependent.
- g. A plane in ℝ3 is a two-dimensional subspace.
- h. The nonpivot columns of a matrix are always linearly dependent.
- i. Row operations on a matrix A can change the linear dependence relations among the rows of A.
- j. Row operations on a matrix can change the null space.
- k. The rank of a matrix equals the number of nonzero rows.
- l. If an m × n matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows, then the dimension of the solution space of Ax = 0 is m − k.
- m. If B is obtained from a matrix A by several elementary row operations, then rank B = rank A.
- n. The nonzero rows of a matrix A form a basis for Row A.
- ○. If matrices A and B have the same reduced echelon form, then Row A = Row B.
- p. If H is a subspace of ℝ3, then there is a 3 × 3 matrix A such that H = Col A.
- q. If A is m × n and rank A = m, then the linear transformation x ↦ Ax is one-to-one.
- r. If A is m × n and the linear transformation x ↦ Ax is onto, then rank A = m.
- s. A change-of-coordinates matrix is always invertible.
- t. If B = {b1, ..., bn} and C = {c1, ..., cn} are bases for a vector space V, then the jth column of the change-of-coordinates matrix
is the coordinate vector [cj]B.
a.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “The set of all linear combinations of
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Here, the given vectors are
The span {
Thus, the linear combinations of
Hence, the statement is true.
b.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The set S is
It is given that the set
That is, every element in the vector space
Here, the set
The smaller set
If the vector space V is spanned by
Hence, the statement is true.
c.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If
Answer to Problem 1SE
The statement is false.
Explanation of Solution
If
Therefore, it does not imply that S is linearly independent.
Hence, the statement is false.
d.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If S is linearly independent then S is a basis for V” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
A set of vectors
1. The set of vectors
2. The set
It can be seen that the second condition is not satisfied.
Hence, the statement is false.
e.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
It is given that the vector space V is spanned by S, which is nonzero set.
Suppose the set S is linearly independent then, the set S form a basis for V.
Suppose the set S is linearly dependent then, some subset of S linearly independent and which spans V.
That is, some subset of S form a basis for V.
Hence, the statement is true.
f.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
It is given that
Here,
Which implies the
Hence, the statement is false.
g.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “A plane in
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Every plane in
Sometimes plane in
Hence, the statement is false.
h.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “The non-pivot columns of a matrix are always linearly dependent” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Consider the matrix
Here non-pivot columns are linearly independent.
Hence, the statement is false.
i.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “Row operations on a matrix A can change the linear dependence relations among the rows of A” is true or false.
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Row operations on matrix
Hence, the statement is true.
j.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “Row operations on a matrix can change the null space” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Row operations do not change the solution set of the system
Therefore, row operations do not change the null space.
Hence, the statement is false.
k.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “The rank of a matrix equals the number of nonzero rows” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
The rank of a matrix A is the dimension of the column space of A.
The dimension of column space of A is the number of pivot columns in A.
Therefore, the rank of matrix equals the number of pivot columns.
Consider the matrix
The above matrix has 2 rows but rank of the matrix is 1.
Hence, the statement is false.
l.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If an
Answer to Problem 1SE
The statement is false.
Explanation of Solution
If U has k nonzero rows then,
According to the Rank Theorem, the rank of an
Hence, the statement is false.
m.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If B is obtained from a matrix A by several elementary row operations, then
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Elementary row operations does not change the number of pivot columns and hence, does not change the rank of a matrix.
Therefore, the rank of matrix B will be same as the rank of matrix A.
Hence, the statement is true.
n.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “The nonzero rows of a matrix A form a basis for Row A” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
To form a basis for A, the rows have to span A and should also be linearly independent.
The nonzero rows of a matrix A span Row A but that does not guarantee that they are linearly independent.
Hence, the statement is false.
o.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If matrices A and B have the same reduced echelon form, then
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The nonzero rows of the echelon form of a matrix, form a basis for the row space of that matrix.
If the echelon form for two matrices is same, then the basis for the row spaces is also same.
Since, row spaces are vector spaces and if two vector spaces have same basis, then the vector spaces are same.
Hence, the statement is true.
p.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If H is a subspace of
Answer to Problem 1SE
The statement is true.
Explanation of Solution
If H is a zero, 1, 2, or 3 dimensional subspace of
The basis of H will then be in the column space of A.
Therefore,
Hence, the statement is true.
q.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If A is
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Here the matrix A is linear transformation from
The transformation
Here, rank of the matrix is A thus, by the rank nullity theorem null space of
Hence, the statement is false.
r.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If A is
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Here the matrix A is linear transformation from
If the transformation is onto then,
The rank of a matrix A is the dimension of the column space of A.
Therefore, the rank of A is m.
Hence, the statement is true.
s.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “A change-of-coordinate matrix is always invertible” is true or false.
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The columns of
The matrix
Hence, the statement is true.
t.
![Check Mark](/static/check-mark.png)
To find: Whether the statement “If
Answer to Problem 1SE
The statement is false.
Explanation of Solution
The jth column of the change-of-coordinates matrix
Hence, the statement is false.
Want to see more full solutions like this?
Chapter 4 Solutions
Linear Algebra and Its Applications, Books a la Carte Edition Plus MyLab Math with Pearson eText -- Access Code Card (5th Edition)
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Pre-Algebra Student Edition
Elementary Statistics
University Calculus: Early Transcendentals (4th Edition)
Calculus: Early Transcendentals (2nd Edition)
- (±³d-12) (−7+ d) = |||- \d+84arrow_forward(z- = (-2) (→ Use the FOIL Method to find (z — · -arrow_forwardMODELING REAL LIFE Your checking account has a constant balance of $500. Let the function $m$ represent the balance of your savings account after $t$ years. The table shows the total balance of the accounts over time. Year, $t$ Total balance 0 1 2 3 4 5 $2500 $2540 $2580.80 $2622.42 $2664.86 $2708.16 a. Write a function $B$ that represents the total balance after $t$ years. Round values to the nearest hundredth, if necessary. $B\left(t\right)=$ Question 2 b. Find $B\left(8\right)$ . About $ a Question 3 Interpret $B\left(8\right)$ . b represents the total balance checking and saving accounts after 8 years the balance would be 16 / 10000 Word Limit16 words written of 10000 allowed Question 4 c. Compare the savings account to the account, You deposit $9000 in a savings account that earns 3.6% annual interest compounded monthly. A = 11998.70 SINCE 9000 is the principal ( 1+0.036/12)12 times 8 gives me aproxtimately 1997 14 / 10000 Word Limit14 words written of 10000 allowed Skip to…arrow_forward
- Listen MODELING REAL LIFE Your checking account has a constant balance of $500. Let the function m represent the balance of your savings account after t years. The table shows the total balance of the accounts over time. Year, t Total balance 0 $2500 1 $2540 2 $2580.80 3 $2622.42 4 $2664.86 5 $2708.16 a. Write a function B that represents the total balance after t years. Round values to the nearest hundredth, if necessary. B(t) = 500 + 2000(1.02)* b. Find B(8). About $2843.32 Interpret B(8). B I U E T² T₂ c. Compare the savings account to the account, You deposit $9000 in a savings account that earns 3.6% annual interest compounded monthly. B I U E E T² T₂ A = 11998.70 SINCE 9000 is the principal (1+0.036/12)12 times 8 gives me aproxtimately 1997arrow_forwardWhat are the answers for star powerarrow_forwardThe recciprocal rulearrow_forward
- This is an example only. What can be a simialr equation with differnet numbers using logs and can have a mistake in one of the steps and what will be the correct way to solve it. Thanksarrow_forwardCan we have an exponential equation using logarithm however i want to show that one mistake is involved in solving it. Showing the mistake and how to be fixed. Thanks.arrow_forwardIs it possible to show me how to come up with an exponential equation by showing all the steps work and including at least one mistake that me as a person can make. Like a calculation mistake and high light what the mistake is. Thanks so much.arrow_forward
- Consider the weighted voting system [16: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forwardSolutions of inequalitie Google Classroom Mic Is (-3, 2) a solution of 7x+9y > -3? Choose 1 answer: A Yes B No Related content ▶6:06 Testing solutions to inequalities 2 of 4arrow_forwardAre natural logarithms used in real life ? How ? Can u give me two or three ways we can use them. Thanksarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)