An Introduction to Physical Science
14th Edition
ISBN: 9781305079120
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Brooks Cole
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 15SA
A simple pendulum as shown in ● Fig. 4.24 oscillates back and forth. Use the letter designations in the figure to identify the pendulum’s position(s) for the following conditions. (There may be more than one answer. Consider the pendulum to be ideal with no energy losses.)
- (a) Position(s) of instantaneous rest ___
- (b) Position(s) of maximum velocity ___
- (c) Position(s) of maximum Ek ___
- (d) Position(s) of maximum Ep ___
- (e) Position(s) of minimum Ek ___
- (f) Position(s) of minimum Ep ___
- (g) Position(s) after which Ek increases ___
- (h) Position(s) after which Ep increases ___
- (i) Position(s) after which Ek decreases ___
- (j) Position(s) after which Ep decreases ___
Figure 4.24 The Simple Pendulum and Energy
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
We will now determine how the 1/3 rule comes about.
Consider a spring of mass ms which is attached to a wall and oscillates on a frictionless surface as shown below. The spring’s mass is uniformly distributed along the length of the spring.
We will start with the infinitesimal form of kinetic energy, i.e. dKE = ½ (dms )v2. This formula will apply to an infinitesimal segment of the spring of length dx and mass dms as indicated below.
For any point on the spring, the velocity of oscillation will be given by v = (ve/L)x where ve is the velocity of the spring at its end where the mass m is attached, and L is the stretched length of the spring at that instant. Thus, when x = 0 then v = 0, and when x = L/2 then v = ½ ve.
Hint: Figure out how to relate dms to dx and then integrate both sides of the infinitesimal kinetic energy equation to get an equation for the kinetic energy of the spring that includes ms/3.
Problem 10: The restoring force in a Hooke's Law spring is a conservative force, and hence, the work done by that force is represented by a potential-
energy function. Consider a spring with spring constant
k. One end of the spring is fixed at the origin of the coordinate system, and the other is attached to an oscillating block with mass
m. The diagram below shows the potential energy function for the spring and the total mechanical energy of the system.
14.0
12.0
10.0
Etotal
8.0
6.0
4.0+
2.0
0.0
10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0
x(cm)
Part (a) What is the equilibrium position, in centimeters, of the block?
Xeq=18
✓ Correct!
Part (b) What is the position, in centimeters, of one of the turning points of the spring-mass system.
Xturn = 14 ✔ Correct!
Part (c) What is the value, in newtons per meter, of the spring constant?
k=
N/m
TL
7 8 9 HOME
sin()
cos()
tan()
cotan() asin() acos() E 1
4
5
6
acotan()
sinh()
1
2
3
atan()
cosh()
+
END
.
tanh()
cotanh()
ODegrees…
Thank you in advance!
A 780 g object is hung from a spring with a force constant of 30 N/m. What is the displacement of the spring from equilibrium length if it is hanging vertically
Now, the mass in question a is being pulled downward by an additional 9 cm. What is the potential energy?
You release the object, what is the period of oscillation of the mass/spring system?
Using ?=?cos(??), what is the expression of the vertical motion along the y-axis?
What is the maximum speed of the oscillating object? What is the maximum kinetic energy? Do these values make sense from the values in part b?
Chapter 4 Solutions
An Introduction to Physical Science
Ch. 4.1 - Is work a vector quantity? In other words, does it...Ch. 4.1 - What are the units of work?Ch. 4.2 - By what process is energy transferred from one...Ch. 4.2 - To find the difference in gravitational potential...Ch. 4.2 - Prob. 4.1CECh. 4.3 - Overall, can energy be created or destroyed?Ch. 4.3 - What is the difference between total energy and...Ch. 4.3 - Find the kinetic energy of the stone in the...Ch. 4.4 - What is the difference in the operations of a 2-hp...Ch. 4.4 - Electric bills from power companies charge for so...
Ch. 4.4 - A student expends 7.5 W of power in lifting a...Ch. 4.4 - Prob. 4.4CECh. 4.5 - Prob. 1PQCh. 4.5 - Prob. 2PQCh. 4.6 - What is the difference between alternative and...Ch. 4.6 - Prob. 2PQCh. 4 - KEY TERMS 1. work (4.1) 2. joule 3. foot-pound 4....Ch. 4 - Prob. BMCh. 4 - Prob. CMCh. 4 - Prob. DMCh. 4 - Prob. EMCh. 4 - Prob. FMCh. 4 - Prob. GMCh. 4 - Prob. HMCh. 4 - Prob. IMCh. 4 - Prob. JMCh. 4 - Prob. KMCh. 4 - Prob. LMCh. 4 - Prob. MMCh. 4 - KEY TERMS 1. work (4.1) 2. joule 3. foot-pound 4....Ch. 4 - KEY TERMS 1. work (4.1) 2. joule 3. foot-pound 4....Ch. 4 - Work is done on an object when it is ___. (4.1)...Ch. 4 - Which of the following is a unit of work? (4.1)...Ch. 4 - Prob. 3MCCh. 4 - Which of the following objects has the greatest...Ch. 4 - A pitcher throws a fastball. When the catcher...Ch. 4 - The reference point for gravitational potential...Ch. 4 - When the height of an object is changed, the...Ch. 4 - Mechanical energy is ___. (4.2) (a) the sum of...Ch. 4 - On which of the following does the speed of a...Ch. 4 - Power is expressed by which of the following...Ch. 4 - If motor A has twice as much horsepower as motor...Ch. 4 - Prob. 12MCCh. 4 - Which one of the following would not be classified...Ch. 4 - Prob. 14MCCh. 4 - Work is equal to the force times the ___ distance...Ch. 4 - Prob. 2FIBCh. 4 - The unit N m is given the special name of ___ ....Ch. 4 - Prob. 4FIBCh. 4 - Prob. 5FIBCh. 4 - The stopping distance of an automobile on a level...Ch. 4 - Kinetic energy is commonly referred to as the...Ch. 4 - Prob. 8FIBCh. 4 - Prob. 9FIBCh. 4 - Prob. 10FIBCh. 4 - Prob. 11FIBCh. 4 - Prob. 12FIBCh. 4 - Renewable energy sources cannot be ___ . (4.6)Ch. 4 - Gasohol is gasoline mixed with ___ . (4.6)Ch. 4 - Prob. 1SACh. 4 - Do all forces do work? Explain.Ch. 4 - What does work on a shuffleboard puck as it slides...Ch. 4 - A weight lifter holds 900 N (about 200 lb) over...Ch. 4 - For the situation in Fig. 4.4a, if the applied...Ch. 4 - Car B is traveling twice as fast as car A, but car...Ch. 4 - Prob. 7SACh. 4 - If the speed of a moving object is doubled, how...Ch. 4 - A book sits on a library shelf 1.5 m above the...Ch. 4 - (a) A car traveling at a constant speed on a level...Ch. 4 - An object is said to have a negative potential...Ch. 4 - Prob. 12SACh. 4 - A ball is dropped from a height at which it has 50...Ch. 4 - Prob. 14SACh. 4 - A simple pendulum as shown in Fig. 4.24...Ch. 4 - Two students throw identical snowballs from the...Ch. 4 - Prob. 17SACh. 4 - When you throw an object into the air, is its...Ch. 4 - Prob. 19SACh. 4 - Persons A and B do the same job, but person B...Ch. 4 - What does a greater power rating mean in terms of...Ch. 4 - What do we pay the electric company for, power or...Ch. 4 - Prob. 23SACh. 4 - Prob. 24SACh. 4 - Prob. 25SACh. 4 - On average, how much energy do you radiate each...Ch. 4 - Prob. 27SACh. 4 - Prob. 28SACh. 4 - Prob. 29SACh. 4 - Prob. 30SACh. 4 - Prob. 1VCCh. 4 - A fellow student tells you that she has both zero...Ch. 4 - Two identical stones are thrown from the top of a...Ch. 4 - A person on a trampoline can go higher with each...Ch. 4 - With which of our five senses can we detect...Ch. 4 - What are three common ways to save electricity to...Ch. 4 - A worker pushes horizontally on a large crate with...Ch. 4 - While rearranging a dorm room, a student does 400...Ch. 4 - A 5.0-kilo bag of sugar is on a counter. How much...Ch. 4 - How much work is required to lift a 6.0-kg...Ch. 4 - A man pushes a lawn mower on a level lawn with a...Ch. 4 - If the man in Exercise 5 pushes the mower with 40%...Ch. 4 - How much work does gravity do on a 0.150-kg ball...Ch. 4 - A student throws the same ball straight upward to...Ch. 4 - (a) What is the kinetic energy in joules of a...Ch. 4 - A 60-kg student traveling in a car with a constant...Ch. 4 - What is the kinetic energy of a 20-kg dog that is...Ch. 4 - Which has more kinetic energy, a 0.0020-kg bullet...Ch. 4 - Prob. 13ECh. 4 - How much farther would the force in Exercise 13...Ch. 4 - What is the potential energy of a 3.00-kg object...Ch. 4 - How much work is required to lift a 3.00-kg object...Ch. 4 - An object is dropped from a height of 12 m. At...Ch. 4 - A 1.0-kg rock is dropped from a height of 6.0 m....Ch. 4 - A sled and rider with a combined weight of 60 kg...Ch. 4 - A 30.0-kg child starting from rest slides down a...Ch. 4 - If the man in Exercise 5 pushes the lawn mower 6.0...Ch. 4 - If the man in Exercise 5 expended 60 W of power in...Ch. 4 - A student who weighs 556 N climbs a stairway...Ch. 4 - A 125-lb student races up stairs with a vertical...Ch. 4 - On a particular day, the following appliances are...Ch. 4 - Prob. 26E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Prof. P. built a wooden pendulum clock over the break between Winter and Spring quarters during the COVID lockdown (he really did!) If the length of the pendulum is 30.56 cm and the pendulum is pulled to the right 4.8 cm from the equilibrium position to start it moving and it starts at rest, what is the greatest speed of the pendulum as it swings? (Assume that the pendulum swings freely with no friction and use energy considerations to solve)arrow_forwardA 10.0-kg block is released from rest at point in the figure below. The track is frictionless except for the portion between points and C, which has a length of 6.00 m. The block travels down the track, hits a spring force constant 2 300 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. A 3.00 m 6.00 m- wwwwww. Barrow_forwardA pen contains a spring with a spring constant of 261 N/m. When the tip of the pen is in its retracted position, the spring is compressed 4.6 mm from its unstrained length. In order to push the tip out and lock it into its writing position, the spring must be compressed an additional 6.7 mm. How much work is done by the spring force to ready the pen for writing? Be sure to include the proper algebraic sign with your answer.arrow_forward
- The diagram shows a horizontal spring attached to a block. The block’s equilibrium position is at C, and the block oscillates between the points A and E with no friction from the floor. As the block moves from C to E, which of the following statements is true? Select all apply. the spring potential energy decreases the block's kinetic energy stays the same the block's kinetic energy increases the spring potential energy increases the spring potential energy stays the same the block's kinetic energy decreasesarrow_forwardTake a spring and cut it in half to make two springs. Is the spring constant of these smaller springs larger than, smaller than, or the same as the spring constant of the original spring? Explain.arrow_forwardThese are 3 sequential questions, the first two has been answered already. The third is in the second imagearrow_forward
- I'm doing calc1 by myself right now and not sure where to start with this problem: Here are the questions: An object attached to a spring swings vertically around its equilibrium position. The height of the object relative to its position of equilibrium is given by the following function: h(t)=(e^-(x/10)*100sin(x)-10cos(x))/101 *(See photo i have provided)* a) Give the object movement for the first 10 seconds. I know i can find the speed of an object if i have it's acceleration. But how do i find it's movement fom it's height? I have done the integral of the height's equation and it's -(100e^-(x/10)(20sin(x)+99cos(x))/10201+Constant b) Give the total distance traveled by the object during the first 10 seconds I would assume this is something along the lines of finding the final positition of the object and the initial position and substracting them? c) Give the total distance that will be traveled by the object from time t = 0. at this point i am clueless to what i should find I…arrow_forwardLet's see if you can apply what you learned about conservation of energy information about potential energy, kinetic energy, and total energy of the system. In the figure below, a simple pendulum is represented at various positions of its motion. The pendulum has a mass of 1 kg and in figure (a) it is moved to a maximum vertical position of 1.8 m. It is released from that position (starts from rest at the top of its motion, highest position) and is allowed to oscillate back and forth. We assume that there is no air resistance or friction in this example, so the pendulum would continue to oscillate forever unless a force was applied to stop it. We also assume that the acceleration due to gravity is 10 m/s2. Fill in the table below for the potential and kinetic energy of the pendulum mass at the various positions of its motion. Start by calculating the potential energy at the highest position using the fact that PE = mgh. At the highest position, the object is released and thus has no…arrow_forwardNow, solve the equation for w in inverse-seconds or radians/sec. (Remember: a radian equals one.) As usual, -100000 means that we need further information. These are the parameters: • m = 200 grams • Yo = (equilibrium value) = 9 cm •k = (spring constant) = 0.05 N/cmarrow_forward
- Consider a pendulum of mass "m" attached to a spring of mass "M that is free to move in single dimension along a frictionless horizontal surface. Take the gravity g = 10 m/s and the gravitational potential energy is equal to zero at the level of block (y= 0). y X Datum of potential energy: PE = 0 e', a) Write the equations of constraints. b) Determine the degree of freedom (S = ??) c) Write the expression of rM as a function of X and unit vector i d) Write the expression of r'm as a function of unit vector i, e', and e', e) Find the expression of kinetic energy of the system as a function of (M, m, X, I, 0,0) f) Write the expression of potential energy PE of the system as a function of (m, I, 0) g) Write the Lagrangian equation h) Deduce the equations of motion from Euler-Lagrange equationsarrow_forwardThe diagram shows a horizontal spring attached to a block. The block’s equilibrium position is at C, and the block oscillates between the points A and E with no friction from the floor. As the block moves from C to E, which of the following statements is true? Usp is the spring potential energy of the spring and K is the kinetic energy of the block. Usp decreases, K decreases Usp stays the same, K stays the same Usp decreases, K increases Usp increases, K decreases Usp increases, K increasesarrow_forwardKE = ½-mv², Ug = mgh, U₁ = ½kx², E = KE + Ug + Us, Ei = Eƒ, Wfric=Ffricd, Ffric = MkN, E₁ - Wfric = Efarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY