The creation and study of new and very massive elementary particles is an important part of contemporary physics. To create a particle of mass M requires an energy Mc2 . With enough energy, an exotic particle can be created by allowing a fast-moving proton to collide with a similar target particle. Consider a perfectly inelastic collision between two protons: an incident proton with mass kinetic energy K, and momentum magnitude p joins with an originally stationary target proton to form a single product particle of mass M. Not all the kinetic energy of the incoming proton is available to create the product particle because conservation of momentum requires that the system as a whole still must have some kinetic energy after the collision. Therefore, only a fraction of the energy of the incident particle is available to create a new particle. (a) Show that the energy available to create a product particle is given by
This result shows that when the kinetic energy K of the incident proton is large compared with its rest energy mpc2, 2then M approaches (2mpK)1/2/c. Therefore, if the energy of the incoming proton is increased by a factor of 9, the mass you can create increases only by a factor of 3, not by a factor of 9 as would be expected. (b) This problem can be alleviated by using colliding beams as is the case in most modern accelerators. Here the total momentum of a pair of interacting particles can be zero. The center of mass can be at rest after the collision, so, in principle, all the initial kinetic energy can be used for particle creation. Show that
where K is the kinetic energy of each of the two identical colliding particles. Here, if k >> mc2, we have M directly proportional to K as we would desire.
Want to see the full answer?
Check out a sample textbook solutionChapter 39 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- What is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax