(a)
The radial velocity components of both batches of raindrops.
(a)
Answer to Problem 69AP
The radial velocity components of first batch of raindrops is
Explanation of Solution
The first batch of raindrops are moving towards the radio station.
Here there is relative motion between the raindrop and the station. So apply Doppler’s equation to the situation.
Write the expression for the enhanced frequency of radio waves received by the first batch of raindrops.
Here,
The radio waves transmitted towards the first batch of raindrop gets reflected towards the radio station. There is an upward Doppler shift in the frequency of the reflected wave.
Write the expression for the enhanced frequency of the reflected radio waves from first batch of rain drops.
Here,
Use expression (I) in (II).
Due to the relative motion of rain drops and the pulse,
Write the expression to find
Here,
Use expression (IV) in (III).
Solve expression (V) for
Simplify expression (VI) to find
Take terms containing
Similarly repeat the calculations for the second batch of raindrops also. Here the frequency is enhanced in down ward direction. So replace
Conclusion:
Substitute
Substitute
Therefore, the radial velocity components of first batch of raindrops is
(b)
Angular speed of rotation of rotation of the rain drops.
(b)
Answer to Problem 69AP
The angular speed of rotation of the rain drops is
Explanation of Solution
The first batch of rain drops is at bearing of
The time taken by the radio wave to travel from station to rain and come back is
Write the expression for one way distance travelled by the radio waves.
Here,
Write the expression for the diameter of the vortex where the rain drops are whirling.
Here,
Write the expression for the angular sped of rotation of rain drop about the vortex in terms of the diameter.
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the angular speed of rotation of the rain drops is
Want to see more full solutions like this?
Chapter 39 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Which of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forward
- Unlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning