Concept explainers
Determine the specific volume of superheated water vapor at 15 MPa and 350°C using (a) the ideal-gas equation, (b) the generalized compressibility chart, and (c) the steam tables. Also determine the error involved in the first two cases.
(a)
The specific volume of superheated water vapour based on the ideal gas equation.
The error involved.
Answer to Problem 84P
The specific volume of superheated water vapour based on the ideal gas equation is
The error involved is
Explanation of Solution
Write the equation of specific volume of superheated water using ideal gas equation of state.
Here, gas constant is R, pressure and temperature of R-134a are P and T respectively.
Calculate the percentage of error involved.
Here, specific volume at pressure and temperature of 15 MPa and
Conclusion:
Refer to Table A-1, obtain the gas constant, R of water as
Substitute
Thus, the specific volume of superheated water vapour based on the ideal gas equation is
Refer to Table A-6, obtain the value of
Substitute
Thus, the error involved is
(b)
The specific volume of superheated water vapour based on the generalized compressibility chart.
The error involved.
Answer to Problem 84P
The specific volume of superheated water vapour based on the generalized compressibility chart is
The error involved is
Explanation of Solution
Calculate the reduced pressure.
Here, pressure of superheated water vapour is P and critical pressure is
Calculate the reduced temperature.
Here, temperature of superheated water vapor is T and critical temperature is
Calculate the specific volume of superheated water vapour based on the generalized compressibility chart.
Here, the specific volume at ideal condition is
Conclusion:
Refer to Table A-1, obtain the critical pressure and critical temperature of water.
Substitute 22.06 MPa for
Substitute 647.1 K for
Refer to figure A-15, “The compressibility chart”, obtain the compressibility factor, Z by reading the calculated reduced pressure and reduced temperature as 0.65.
Substitute 0.65 for Z and
Thus, the specific volume of superheated water vapour based on the generalized compressibility chart is
Substitute
Thus, the error involved is
(c)
The specific volume of superheated water vapour based on the data from tables.
Answer to Problem 84P
The specific volume of superheated water vapour based on the data from table is
Explanation of Solution
Refer to Table A-6, obtain the specific volume at pressure and temperature of 15 MPa and
Thus, the specific volume of superheated water vapour based on data from steam tables is
Want to see more full solutions like this?
Chapter 3 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
- Determine the moments of the force about the x and the a axes. O 4 m F = {-40i +20j + 10k} N 3 m 6 m aarrow_forward6. A part of the structure for a factory automation system is a beam that spans 30.0 in as shown in Figure P5-6. Loads are applied at two points, each 8.0 in from a support. The left load F₁ = 1800 lb remains constantly applied, while the right load F₂ = 1800 lb is applied and removed fre- quently as the machine cycles. Evaluate the beam at both B and C. A 8 in F₁ = 1800 lb 14 in F2 = 1800 lb 8 in D RA B C 4X2X1/4 Steel tube Beam cross section RDarrow_forward30. Repeat Problem 28, except using a shaft that is rotating and transmitting a torque of 150 N⚫m from the left bear- ing to the middle of the shaft. Also, there is a profile key- seat at the middle under the load.arrow_forward
- 28. The shaft shown in Figure P5-28 is supported by bear- ings at each end, which have bores of 20.0 mm. Design the shaft to carry the given load if it is steady and the shaft is stationary. Make the dimension a as large as pos- sible while keeping the stress safe. Determine the required d = 20mm D = ? R = ?| 5.4 kN d=20mm Length not to scale -a = ?- +а= a = ? + -125 mm- -250 mm- FIGURE P5-28 (Problems 28, 29, and 30)arrow_forward12. Compute the estimated actual endurance limit for SAE 4130 WQT 1300 steel bar with a rectangular cross sec- tion of 20.0 mm by 60 mm. It is to be machined and subjected to repeated and reversed bending stress. A reli- ability of 99% is desired.arrow_forward28. The shaft shown in Figure P5-28 is supported by bear- ings at each end, which have bores of 20.0 mm. Design the shaft to carry the given load if it is steady and the shaft is stationary. Make the dimension a as large as pos- sible while keeping the stress safe. Determine the required d = 20mm D = ? R = ?| 5.4 kN d=20mm Length not to scale -a = ?- +а= a = ? + -125 mm- -250 mm- FIGURE P5-28 (Problems 28, 29, and 30)arrow_forward
- 2. A strut in a space frame has a rectangular cross section of 10.0 mm by 30.0 mm. It sees a load that varies from a tensile force of 20.0 kN to a compressive force of 8.0 kN.arrow_forwardfind stress at Qarrow_forwardI had a theoretical question about attitude determination. In the attached images, I gave two axis and angles. The coefficient of the axes are the same and the angles are the same. The only difference is the vector basis. Lets say there is a rotation going from n hat to b hat. Then, you introduce a intermediate rotation s hat. So, I want to know if the DCM produced from both axis and angles will be the same or not. Does the vector basis affect the numerical value of the DCM? The DCM formula only cares about the coefficient of the axis and the angle. So, they should be the same right?arrow_forward
- 3-15. A small fixed tube is shaped in the form of a vertical helix of radius a and helix angle y, that is, the tube always makes an angle y with the horizontal. A particle of mass m slides down the tube under the action of gravity. If there is a coefficient of friction μ between the tube and the particle, what is the steady-state speed of the particle? Let y γ 30° and assume that µ < 1/√3.arrow_forwardThe plate is moving at 0.6 mm/s when the force applied to the plate is 4mN. If the surface area of the plate in contact with the liquid is 0.5 m^2, deterimine the approximate viscosity of the liquid, assuming that the velocity distribution is linear.arrow_forward3-9. Given that the force acting on a particle has the following components: Fx = −x + y, Fy = x − y + y², F₂ = 0. Solve for the potential energy V. -arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY