Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 38, Problem 72AP

(a)

To determine

To show: The point where I=0.5Imax must have ϕ=2sinϕ .

(a)

Expert Solution
Check Mark

Answer to Problem 72AP

The point where I=0.5Imax must have ϕ=2sinϕ .

Explanation of Solution

Given info: The equation of the intensity of the light in the diffraction pattern is I=Imaxsin2ϕϕ2 where ϕ=(πasinθ)λ

The formula to calculate the intensity of the light is,

I=Imaxsin2ϕϕ2IImax=sin2ϕϕ2

Here,

Imax is the maximum intensity of the light.

ϕ is the phase constant of the light.

The value of I=0.5Imax .

Substitute 0.5Imax for I in above equation to find the value of ϕ .

0.5ImaxImax=sin2ϕϕ2sin2ϕϕ2=12sinϕ=ϕ2ϕ=2sinϕ

Conclusion

Therefore, the point where I=0.5Imax must have ϕ=2sinϕ .

(b)

To determine

To draw: Plot y1=sinϕ and y2=ϕ2 on the same set of axes over a range from ϕ=1rad to ϕ=π2rad .

(b)

Expert Solution
Check Mark

Answer to Problem 72AP

The graph between y1=sinϕ and y2=ϕ2 on the same set of axes over a range from ϕ=1rad to ϕ=π2rad .

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 38, Problem 72AP , additional homework tip  1

Figure (1)

Explanation of Solution

Given info: The equation of the intensity of the light in the diffraction pattern is I=Imaxsin2ϕϕ2 where ϕ=(πasinθ)λ

The equation of y1 is sinϕ and the equation for y2 is ϕ2 over a range from ϕ=1rad to ϕ=π2rad is shown in the figure below.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 38, Problem 72AP , additional homework tip  2

The solution of both the equation to coincide at a point is ,

sinϕ=ϕ2ϕ=1.39rad

So the solution of the transcendental equation is ϕ=1.39rad .

(c)

To determine

To show: The angular full width at half maximum of the central diffraction maximum is θ=0.885λa if the fraction λa is not large.

(c)

Expert Solution
Check Mark

Answer to Problem 72AP

The angular full width at half maximum of the central diffraction maximum is θ=0.885λa if the fraction λa is not large.

Explanation of Solution

Given info: The equation of the intensity of the light in the diffraction pattern is I=Imaxsin2ϕϕ2 where ϕ=(πasinθ)λ

The formula to calculate the phase angle is,

ϕ=(πasinθ)λ

Rewrite the above equation for sinθ .

sinθ=(ϕπ)λa

If the value of λa is small then,

θ(ϕπ)λa

The path covered by the light is symmetric so the phase angle is double the initial value.

θ=2(ϕπ)λa

Substitute 1.39rad for ϕ in above equation to find the value of θ .

θ=2(1.39rad3.14rad)λa=0.885λa

Conclusion

Therefore, the angular full width at half maximum of the central diffraction maximum is θ=0.885λa if the fraction λa is not large.

(d)

To determine

The number of steps involved to solve the transcendental equation ϕ=2sinϕ .

(d)

Expert Solution
Check Mark

Answer to Problem 72AP

The number of steps involved to solve the transcendental equation ϕ=2sinϕ is around 13 .

Explanation of Solution

Given info: The equation of the intensity of the light in the diffraction pattern is I=Imaxsin2ϕϕ2 where ϕ=(πasinθ)λ

The equation of y1 is 2sinϕ and the equation for y2 is ϕ , the value of ϕ is taken from 1 to 2 to find the solution of the equation and the corresponding values are shown in the table below.

ϕ 2sinϕ
1 1.19
2 1.29
1.5 1.41
1.4 1.394
1.39 1.391
1.392 1.3917
1.3915 1.39154
1.39152 1.39155
1.3916 1.39158
1.39158 1.391563
1.39157 1.391561
1.39156 1.391558
1.3915574 1.3915574

The solution of the transcendental equation ϕ=2sinϕ is 1.3915574 and the solution can be achieved in around 13 steps.

Conclusion

Therefore, the number of steps involved to solve the transcendental equation ϕ=2sinϕ is around 13 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
= = You are preparing your house for a party with your classmates and friends, and want to set up an impressive light display to entertain them. From your study of fluids, you have come up with the idea based on the water flowing from the tank in the figure. You set up the tank as shown in the figure, filled to a depth h 1.15 m, and sitting on a stand of height { 0.300 m. You punch a hole in the tank at a height of Y1 = 0.102 m above the stand. (Ignore the thickness of the tank in your calculation.) You want to punch a second hole higher on the tank so that the streams of water from the two holes arrive at the same position on the table, in a catch basin at a distance d from the right edge of the stand. A pump will continuously carry water from the catch basin back up to the top of the tank to keep the water level fixed. Then, you will use laser pointers on the left side of the tank to light the two streams of water, which will capture the light (see the section on total internal…
A square metal sheet 2.5 cm on a side and of negligible thickness is attached to a balance and inserted into a container of fluid. The contact angle is found to be zero, as shown in Figure a, and the balance to which the metal sheet is attached reads 0.42 N. A thin veneer of oil is then spread over the sheet, and the contact angle becomes 180°, as shown in Figure b. The balance now reads 0.41 N. What is the surface tension of the fluid? N/m a
Sucrose is allowed to diffuse along a 12.0-cm length of tubing filled with water. The tube is 6.1 cm² in cross-sectional area. The diffusion coefficient is equal to 5.0 × 10-10 m²/s, and 8.0 × 10−14 x transported along the tube in 18 s. What is the difference in the concentration levels of sucrose at the two ends of the tube? .00567 kg is

Chapter 38 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY