EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100663987
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.67AP
To determine
The ratio of the minimum viewing distance to the vertical dimension of the picture such that the person is not able to resolve the lines.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An American standard analog television picture (non- HDTV), also known as NTSC, is composed of approximately 485 visible horizontal lines of varying light intensity. Assume your ability to resolve the lines is limited only by the Rayleigh criterion, the pupils of your eyes are 5.00 mm in diameter, and the average wavelength of the light coming from the screen is 550 nm. Calculate the ratio of the minimum viewing distance to the vertical dimension of the picture such that you will not be able to resolve the lines.
When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional to
I(t),
where t represents the thickness of the medium (in feet). In clear seawater, the intensity 3 feet below the surface is 25% of the initial intensity
I0
of the incident beam. What is the intensity of the beam 14 feet below the surface? (Give your answer in terms of
I0.
Round any constants or coefficients to five decimal places.)
Parameters of a Dielectric Waveguide. Light of free-space wavelength X, = 0.87 um is
guided by a thin planar film of width d = 2 μm and refractive index n₁ = 1.6 surrounded by
a medium of refractive index n₂ = 1.4.
(a) Determine the critical angle 0, and its complement c, the numerical aperture NA, and
the maximum acceptance angle for light originating in air (n = 1).
(b) Determine the number of TE modes.
(c) Determine the bounce angle and the group velocity v of the m= 0 TE mode.
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 38 - Suppose the slit width in Figure 37.4 is made half...Ch. 38 - Consider the central peak in the diffraction...Ch. 38 - Cats eyes have pupils that can be modeled as...Ch. 38 - Suppose you are observing a binary star with a...Ch. 38 - Ultraviolet light of wavelength 350 nm is incident...Ch. 38 - A polarizer for microwaves can be made as a grid...Ch. 38 - You are walking down a long hallway that has many...Ch. 38 - Certain sunglasses use a polarizing material to...Ch. 38 - What is most likely to happen to a beam of light...Ch. 38 - In Figure 38.4, assume the slit is in a barrier...
Ch. 38 - A Fraunhofer diffraction pattern is produced on a...Ch. 38 - Consider a wave passing through a single slit....Ch. 38 - Assume Figure 38.1 was photographed with red light...Ch. 38 - If plane polarized light is sent through two...Ch. 38 - Why is it advantageous to use a large-diameter...Ch. 38 - What combination of optical phenomena causes the...Ch. 38 - Prob. 38.10OQCh. 38 - When unpolarized light passes through a...Ch. 38 - Off in the distance, you see the headlights of a...Ch. 38 - Prob. 38.1CQCh. 38 - Holding your hand at arms length, you can readily...Ch. 38 - Prob. 38.3CQCh. 38 - (a) Is light from the sky polarized? (b) Why is it...Ch. 38 - Prob. 38.5CQCh. 38 - If a coin is glued to a glass sheet and this...Ch. 38 - Fingerprints left on a piece of glass such as a...Ch. 38 - A laser produces a beam a few millimeters wide,...Ch. 38 - Prob. 38.9CQCh. 38 - John William Strutt, Lord Rayleigh (1842-1919),...Ch. 38 - Prob. 38.11CQCh. 38 - Prob. 38.12CQCh. 38 - Light of wavelength 587.5 nm illuminates a slit of...Ch. 38 - Heliumneon laser light ( = 632.8 nm) is sent...Ch. 38 - Sound with a frequency 650 Hz from a distant...Ch. 38 - A horizontal laser beam of wavelength 632.8 nm has...Ch. 38 - Coherent microwaves of wavelength 5.00 cm enter a...Ch. 38 - Light of wavelength 540 nm passes through a slit...Ch. 38 - A screen is placed 50.0 cm from a single slit,...Ch. 38 - A screen is placed a distance L from a single slit...Ch. 38 - Assume light of wavelength 650 nm passes through...Ch. 38 - What If? Suppose light strikes a single slit of...Ch. 38 - A diffraction pattern is formed on a screen 120 cm...Ch. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 38.13PCh. 38 - The pupil of a cats eye narrows to a vertical slit...Ch. 38 - The angular resolution of a radio telescope is to...Ch. 38 - A pinhole camera has a small circular aperture of...Ch. 38 - The objective lens of a certain refracting...Ch. 38 - Yellow light of wavelength 589 nm is used to view...Ch. 38 - What is the approximate size of the smallest...Ch. 38 - A heliumneon laser emits light that has a...Ch. 38 - To increase the resolving power of a microscope,...Ch. 38 - Narrow, parallel, glowing gas-filled tubes in a...Ch. 38 - Impressionist painter Georges Seurat created...Ch. 38 - A circular radar antenna on a Coast Guard ship has...Ch. 38 - Prob. 38.25PCh. 38 - Prob. 38.26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Three discrete spectral lines occur at angles of...Ch. 38 - The laser in a compact disc player must precisely...Ch. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - A diffraction grating has 4 200 rulings/cm. On a...Ch. 38 - The hydrogen spectrum includes a red line at 656...Ch. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Light of wavelength 500 nm is incident normally on...Ch. 38 - A wide beam of laser light with a wavelength of...Ch. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Potassium iodide (Kl) has the same crystalline...Ch. 38 - Prob. 38.40PCh. 38 - Prob. 38.41PCh. 38 - Why is the following situation impossible? A...Ch. 38 - Prob. 38.43PCh. 38 - The angle of incidence of a light beam onto a...Ch. 38 - Unpolarized light passes through two ideal...Ch. 38 - Prob. 38.46PCh. 38 - You use a sequence of ideal polarizing niters,...Ch. 38 - An unpolarized beam of light is incident on a...Ch. 38 - The critical angle for total internal reflection...Ch. 38 - For a particular transparent medium surrounded by...Ch. 38 - Three polarizing plates whose planes are parallel...Ch. 38 - Two polarizing sheets are placed together with...Ch. 38 - In a single-slit diffraction pattern, assuming...Ch. 38 - Laser light with a wavelength of 632.8 nm is...Ch. 38 - Prob. 38.55APCh. 38 - Prob. 38.56APCh. 38 - Prob. 38.57APCh. 38 - Two motorcycles separated laterally by 2.30 m are...Ch. 38 - The Very Large Array (VLA) is a set of 27 radio...Ch. 38 - Two wavelengths and + (with ) are incident on...Ch. 38 - Review. A beam of 541-nm light is incident on a...Ch. 38 - Prob. 38.62APCh. 38 - Prob. 38.63APCh. 38 - Prob. 38.64APCh. 38 - Prob. 38.65APCh. 38 - Prob. 38.66APCh. 38 - Prob. 38.67APCh. 38 - A pinhole camera has a small circular aperture of...Ch. 38 - Prob. 38.69APCh. 38 - (a) Light traveling in a medium of index of...Ch. 38 - The intensity of light in a diffraction pattern of...Ch. 38 - Prob. 38.72APCh. 38 - Two closely spaced wavelengths of light are...Ch. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 38.75CPCh. 38 - A spy satellite can consist of a large-diameter...Ch. 38 - Suppose the single slit in Figure 38.4 is 6.00 cm...Ch. 38 - In Figure P37.52, suppose the transmission axes of...Ch. 38 - Consider a light wave passing through a slit and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the angle of refraction of the incident light is on air (n-1) and glass (n=1.42) boundary, if the angle of refraction is 1/2 of the angle of reflection? Note: Sin(20) = 2 Sin(0)Cos(0) O 37° O 39° O 41° O 45° 43°arrow_forwardTwo sources are emitting coherent, monochromatic EM waves with a wavelength of 2 cm in air. Source 1 is embedded in a material with index of refraction n1 = 1.5. The distance between source 1 and the edge of the material is 6 cm. You can assume nair = 1. At the point marked with an X, which is 9 cm from source 2 and 3 cm from the edge of the material that source 1 is embedded inside, what kind of interference will you find between EM waves from the two sources? Group of answer choices Destructive Constructivearrow_forwardTwo light sources can be adjusted to emit monochromatic light of any visible wavelength. The two sources are coherent, 2.04 mm apart, and in line with an observer, so that one source is 2.04 mm farther from the observer than the other. (a) For what visible wavelengths (380 to 750 nm) will the observer see the brightest light, owing to constructive interference? (b) How would your answers to part (a) be affected if the two sources were not in line with the observer, but were still arranged so that one source is 2.04 mm farther away from the observer than the other? (c) For what visible wavelengths will there be destructive interference at the location of the observer?arrow_forward
- Refractive Index (n) is a ratio of the speed of light in a vacuum to the speed of light in materials such as glass, water, plastic, etc. Using Snell's Law, and given an air to glass interface with and angle of incidence of 15 degrees, what will be the angle of refractance R if the refractive index of the glass is 1.5 ? Snell's Law: n; (sin I) = n, (sin R) So, Sin R = n; (sin I) / n And, R = arcsin (n; (sin I) / n,) For each angle I, find angle R: 5. I=0, R = 6. I=45, R = 7. I= 60, R = 8. I = 75, R = = arcsin (1(.259)/1.5) = arcsin (.172) = 9.9 degrees Wavelength in Air- Light- Angle of Light -Wavelength in Glass Normal 90° R Air nj-1 Glassarrow_forwardOne leg of a Michelson interferometer contains an evacuated cylinder of length L, =0.30m having glass plates on each end. A gas is slowly leaked into the cylinder until a pressure of 1 atm is reached. If 140 bright fringes pass on the screen when light of wavelength A=440nm is used, what is n, the index of refraction of the gas? State your answer to the nearest 0.000001 ( one part per million).arrow_forwardThe limit to the eye’s visual acuity is related to diffraction by the pupil.D = 2.85 mmdh = 1.25 m a. What is the angle between two just-resolvable points of light for a 2.85 mm diameter pupil in radians, assuming an average wavelength of 550 nm? θmin = b. Take your result to be the practical limit for the eye. What is the greatest possible distance in km a car can be from you if you can resolve its two headlights, given they are 1.25 m apart? L= c. What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye in mm? da =arrow_forward
- White light is sent through an interface of a 100% (w/v) glycerol solution (n1 1.474) and a 20% (w/v) sucrose solution (n2 1.364) at an angle of O1. Incident ray Reflected ray If O1 32°, determine the angle of O2 in degrees. Refractive index = n, Refractive index = n, If O, = 0°, determine the angle of 02 in degrees. 2. Refracted ray | |arrow_forwardA uniform plane wave is generated from a ham radio antenna on earth. The take off angle is 60 degrees (the angle ffrom ground going up is 60 deg). Using simple trigonometry the angle if incidence with the ionosphere would be 30 degrees. Assume the F layer of the ionosphere is 300 km above the earth. The wave frequency from the transmitter is 21 MHz. WIll this wave refract off the ionosphere and end up somewhere on earth? If yes, what is the distance it travels?arrow_forwarda) For light normally incident on an interface between vacuum and a transparent medium of index n, show that the intensity S2 of the transmitted light is given by the following equation. b) Light travels perpendicularly through a slab of gallium phosphide, surrounded by air, with parallel surfaces of entry and exit. Apply the transmission fraction in part (a) to find the approximate overall percent transmission through the slab of gallium phosphide. Ignore light reflected back and forth within the slab.arrow_forward
- To reduce the loss of light when reflected from the glass surface, the latter is covered with a thin layer of a substance, the refractive index of which is n '= sqrt (n), where n is the refractive index of the glass. At what minimum thickness d (min) of this layer will the reflectivity of glass in the normal direction be minimal for light with a wavelength λ?arrow_forwardDifferent isotopes of the same element emit light at slightly different wavelengths. A wavelength in the emission spectrum of a hydrogen atom is 656.45 nm; for deuterium, the corresponding wavelength is 656.27 nm. (a) What minimum number of slits is required to resolve these two wavelengths in second order? (b) If the grating has 500.00 slits/mm, find the angles and angular separation of these two wavelengths in the second orderarrow_forward. The velocity of light in the core of a step index fiber is 2.01 × 108 m s-1, and the critical angle at the core-cladding interface is 80°. Determine the numerical aperture and the acceptance angle for the fiber in air, assuming it has a core diameter suitable for consideration by ray analysis. The velocity of light in a vacuum is 2.998 x 103 m s-1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY