Ultraviolet light of wavelength 350 nm is incident on a diffraction grating with slit spacing d and forms an interference pattern on a screen a distance L away. The angular positions θ bright of the interference maxima are large. The locations of the bright fringes are marked on the screen. Now red light of wavelength 700 nm is used with a diffraction grating to form another diffraction pattern on the screen. Will the bright fringes of this pattern be located at the marks on the screen if (a) the screen is moved to a distance 2 L from the grating, (b) the screen is moved to a distance L /2 from the grating, (c) the grating is replaced with one of slit spacing 2 d , (d) the grating is replaced with one of slit spacing d /2, or (e) nothing is changed?
Ultraviolet light of wavelength 350 nm is incident on a diffraction grating with slit spacing d and forms an interference pattern on a screen a distance L away. The angular positions θ bright of the interference maxima are large. The locations of the bright fringes are marked on the screen. Now red light of wavelength 700 nm is used with a diffraction grating to form another diffraction pattern on the screen. Will the bright fringes of this pattern be located at the marks on the screen if (a) the screen is moved to a distance 2 L from the grating, (b) the screen is moved to a distance L /2 from the grating, (c) the grating is replaced with one of slit spacing 2 d , (d) the grating is replaced with one of slit spacing d /2, or (e) nothing is changed?
Ultraviolet light of wavelength 350 nm is incident on a diffraction grating with slit spacing d and forms an interference pattern on a screen a distance L away. The angular positions θbright of the interference maxima are large. The locations of the bright fringes are marked on the screen. Now red light of wavelength 700 nm is used with a diffraction grating to form another diffraction pattern on the screen. Will the bright fringes of this pattern be located at the marks on the screen if (a) the screen is moved to a distance 2L from the grating, (b) the screen is moved to a distance L/2 from the grating, (c) the grating is replaced with one of slit spacing 2d, (d) the grating is replaced with one of slit spacing d/2, or (e) nothing is changed?
Ultraviolet light of wavelength 350 nm is incident on a diffraction grating with slit spacing d and forms an interference pattern on a screen a distance L away. The angular positions θbright of the interference maxima are large. The locations of the bright fringes are marked on the screen. Now red light of wavelength 700 nm is used with a diffraction grating to form another diffraction pattern on the screen. Will the bright fringes of this patternbe located at the marks on the screen if (a) the screen is moved to a distance 2L from the grating, (b) the screen is moved to a distance L/2 from the grating, (c) the grating is replaced with one of slit spacing 2d, (d) the grating is replaced with one of slit spacing d/2, or (e) nothing is changed?
By passing a light wavelength 500 A.U.
through two pinholes 0.5 mm apart, an
interference pattern is formed on a screen kept
parallel to the plane of the pinholes and 100
cm from them. Find the distance between 5th
dark band on one side of central bright band
and 6th bright band on the other side of central
bright band.
Monochromatic light with wavelength 620 nm passes through a circular aperture with diameter 7.4 mm. The resulting diffraction pattern is observed on a screen that is 4.5 m from the aperture. What is the diameter of the Airy disk on the screen?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY