THERMODYNAMICS LLF W/ CONNECT ACCESS
9th Edition
ISBN: 9781264446889
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.8, Problem 29P
One pound-mass of water fills a container whose volume is 2 ft3. The pressure in the container is 100 psia. Calculate the total internal energy and enthalpy in the container. 21/08/2018 Vault:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A constant volume vessel contains 3 m3 of hydrogen gas at 250 kPa pressure and 550 K temperature. The hydrogen gas is then cooled until its temperature reaches 350 K. Calculate the final pressure in the tank and the amount of heat transferred. The gas constant of hydrogen gas is R = 4,124 kPa.m3 / kg.K, the average specific heat at constant volume is cv = 10,377 kJ / kg. ° C.
7. In a sturdy closed container with a volume of 0.3m ^ 3, there is a wet steam of 300 kPa in pressure. When the total mass is 4 kg, calculate the mass and volume of liquid and water vapor, respectively. What is the pressure in the vessel when heated to 300C?
P-v diagram or T-v diagram should be shown and the corresponding status and process should be indicated.
Thermodynamics
Chapter 3 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
Ch. 3.8 - A propane tank is filled with a mixture of liquid...Ch. 3.8 - Is iced water a pure substance? Why?Ch. 3.8 - What is the difference between saturated vapor and...Ch. 3.8 - What is the difference between saturated liquid...Ch. 3.8 - If the pressure of a substance is increased during...Ch. 3.8 - Is it true that water boils at higher temperature...Ch. 3.8 - What is the difference between the critical point...Ch. 3.8 - A househusband is cooking beef stew for his family...Ch. 3.8 - How does a boiling process at supercritical...Ch. 3.8 - What is quality? Does it have any meaning in the...
Ch. 3.8 - Does the amount of heat absorbed as 1 kg of...Ch. 3.8 - Does the reference point selected for the...Ch. 3.8 - What is the physical significance of hfg? Can it...Ch. 3.8 - Does hfg change with pressure? How?Ch. 3.8 - Is it true that it takes more energy to vaporize 1...Ch. 3.8 - Which process requires more energy: completely...Ch. 3.8 - In what kind of pot will a given volume of water...Ch. 3.8 - It is well known that warm air in a cooler...Ch. 3.8 - In the absence of compressed liquid tables, how is...Ch. 3.8 - A perfectly fitting pot and its lid often stick...Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - A 1.8-m3 rigid tank contains steam at 220C....Ch. 3.8 - One pound-mass of water fills a container whose...Ch. 3.8 - A pistoncylinder device contains 0.85 kg of...Ch. 3.8 - 10 kg of R-134a fill a 1.115-m3 rigid container at...Ch. 3.8 - What is the specific internal energy of water at...Ch. 3.8 - What is the specific volume of water at 5 MPa and...Ch. 3.8 - What is the specific volume of R-134a at 20C and...Ch. 3.8 - Refrigerant-134a at 200 kPa and 25C flows through...Ch. 3.8 - One kilogram of R-134a fills a 0.14-m3 weighted...Ch. 3.8 - One kilogram of water vapor at 200 kPa fills the...Ch. 3.8 - The temperature in a pressure cooker during...Ch. 3.8 - How much error would one expect in determining the...Ch. 3.8 - Water is to be boiled at sea level in a...Ch. 3.8 - Repeat Prob. 340 for a location at an elevation of...Ch. 3.8 - 10 kg of R-134a at 300 kPa fills a rigid container...Ch. 3.8 - 100 kg of R-134a at 200 kPa are contained in a...Ch. 3.8 - Water initially at 200 kPa and 300C is contained...Ch. 3.8 - Saturated steam coming off the turbine of a steam...Ch. 3.8 - A person cooks a meal in a 30-cm-diameter pot that...Ch. 3.8 - Water is boiled at 1 atm pressure in a...Ch. 3.8 - Repeat Prob. 347 for a location at 2000-m...Ch. 3.8 - Prob. 49PCh. 3.8 - A rigid tank with a volume of 1.8 m3 contains 40...Ch. 3.8 - A pistoncylinder device contains 0.005 m3 of...Ch. 3.8 - A 5-ft3 rigid tank contains a saturated mixture of...Ch. 3.8 - Superheated water vapor at 180 psia and 500F is...Ch. 3.8 - One kilogram of water fills a 150-L rigid...Ch. 3.8 - 10 kg of R-134a fill a 0.7-m3 weighted...Ch. 3.8 - A pistoncylinder device contains 0.6 kg of steam...Ch. 3.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 3.8 - Water is being heated in a vertical pistoncylinder...Ch. 3.8 - A rigid tank initially contains 1.4 kg saturated...Ch. 3.8 - A pistoncylinder device initially contains 50 L of...Ch. 3.8 - The spring-loaded pistoncylinder device shown in...Ch. 3.8 - A pistoncylinder device initially contains steam...Ch. 3.8 - Under what conditions is the ideal-gas assumption...Ch. 3.8 - What is the difference between mass and molar...Ch. 3.8 - Propane and methane are commonly used for heating...Ch. 3.8 - What is the specific volume of oxygen at 25 psia...Ch. 3.8 - A 100-L container is filled with 1 kg of air at a...Ch. 3.8 - A mass of 1 lbm of argon is maintained at 200 psia...Ch. 3.8 - A 400-L rigid tank contains 5 kg of air at 25C....Ch. 3.8 - The pressure gage on a 2.5-m3 oxygen tank reads...Ch. 3.8 - A spherical balloon with a diameter of 9 m is...Ch. 3.8 - Reconsider Prob. 373. Using appropriate software,...Ch. 3.8 - A 1-m3 tank containing air at 10C and 350 kPa is...Ch. 3.8 - A mass of 10 g of oxygen fill a weighted...Ch. 3.8 - A mass of 0.1 kg of helium fills a 0.2 m3 rigid...Ch. 3.8 - A rigid tank whose volume is unknown is divided...Ch. 3.8 - A rigid tank contains 20 lbm of air at 20 psia and...Ch. 3.8 - In an informative article in a magazine it is...Ch. 3.8 - What is the physical significance of the...Ch. 3.8 - Determine the specific volume of refrigerant-134a...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of nitrogen gas at...Ch. 3.8 - Prob. 88PCh. 3.8 - Carbon dioxide gas enters a pipe at 3 MPa and 500...Ch. 3.8 - Prob. 90PCh. 3.8 - A 0.016773-m3 tank contains 1 kg of...Ch. 3.8 - Prob. 92PCh. 3.8 - What is the percentage of error involved in...Ch. 3.8 - What is the physical significance of the two...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - A 3.27-m3 tank contains 100 kg of nitrogen at 175...Ch. 3.8 - Nitrogen at 150 K has a specific volume of...Ch. 3.8 - A 1-m3 tank contains 2.841 kg of steam at 0.6 MPa....Ch. 3.8 - Prob. 103PCh. 3.8 - Prob. 104PCh. 3.8 - On a certain day, the temperature and relative...Ch. 3.8 - Prob. 106PCh. 3.8 - Consider two rooms that are identical except that...Ch. 3.8 - A thermos bottle is half-filled with water and is...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Prob. 111RPCh. 3.8 - Prob. 112RPCh. 3.8 - The gage pressure of an automobile tire is...Ch. 3.8 - A tank contains argon at 600C and 200 kPa gage....Ch. 3.8 - The combustion in a gasoline engine may be...Ch. 3.8 - Prob. 116RPCh. 3.8 - Prob. 117RPCh. 3.8 - A rigid tank with a volume of 0.117 m3 contains 1...Ch. 3.8 - A 9-m3 tank contains nitrogen at 17C and 600 kPa....Ch. 3.8 - A 10-kg mass of superheated refrigerant-134a at...Ch. 3.8 - A 4-L rigid tank contains 2 kg of saturated...Ch. 3.8 - Prob. 123RPCh. 3.8 - A tank whose volume is unknown is divided into two...Ch. 3.8 - Prob. 125RPCh. 3.8 - A tank contains helium at 37C and 140 kPa gage....Ch. 3.8 - Prob. 127RPCh. 3.8 - On the property diagrams indicated below, sketch...Ch. 3.8 - Ethane at 10 MPa and 100C is heated at constant...Ch. 3.8 - Steam at 400C has a specific volume of 0.02 m3/kg....Ch. 3.8 - Consider an 18-m-diameter hot-air balloon that,...Ch. 3.8 - Prob. 135FEPCh. 3.8 - A 3-m3 rigid vessel contains steam at 2 MPa and...Ch. 3.8 - Prob. 137FEPCh. 3.8 - Water is boiled at 1 atm pressure in a coffeemaker...Ch. 3.8 - Prob. 139FEPCh. 3.8 - Water is boiled in a pan on a stove at sea level....Ch. 3.8 - A rigid tank contains 2 kg of an ideal gas at 4...Ch. 3.8 - The pressure of an automobile tire is measured to...Ch. 3.8 - Consider a sealed can that is filled with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question # 3 - Water of 2 kg fills a part of the chamber with P = 300 kPa. The other part of the chamber is separated by a partition from the water part, and it is empty and evacuated. The total chamber volume is 1.5 m³; the part filled with water has 1/3 of the total volume. If the partition between the two parts is removed and water expands inside the entire chamber, determine the following: a) The water temperature before removing the partition b) The pressure after removing the partition if T = 3 °C c) For part (b), find the specific enthalpy waterarrow_forwardA gas has a temperature of 103 F (fahrenheit) and has a specific heat at a constant pressure of 0.28 Btu / lbm-F. Regardless of the pressure, cP increases 0.0005 btu for each degree increase in temperature. Assuming the gas is 1 pound. (A) calculate the enthalpy change if the temperature rises by 200 f (C)Find the heat and work that needs to be done to achieve the same enthalpy change.arrow_forwardA rigid tank filled with water is divided into two chambers by a membrane. The membrane is a perfect insulator and there is no heat transfer between the chambers. The volume of the water in chamber A and chamber B is VA = 1 m² and Vg = 4 m³, respectively. Initially (state 1) chamber A contains water at a temperature of 150 °C and a pressure of 350kPa. Chamber A also contains a plate of nickel with a mass of myi = 20 kg that is always in thermal equilibrium with the water. Chamber B contains 40 kg of water at a temperature of 80 °C. The membrane ruptures and heat transfers between the tank and its surroundings such that the water inside the tank reaches a uniform state, with a final temperature, T2, of 100°C. The specific heat of nickel is CpNi = 0.44 kJ/kg-K. c) Determine the pressure and specific internal energy of the water at the final state. (ie. P, and uz) d) Determine total heat transfer (between the tank and its surroundings) during the process. (ie. 1Q2) A В (Water) (Water)…arrow_forward
- 2. Saturated liquid water at 250 kPa is contained in a piston-cylinder device as shown in the figure below. The total initial volume is 0.012m'. As the water is heated, the pressure inside the cylinder remains constant until the piston hits the stops. When the piston hits the stops the specific volume is 0.47443 m/kg. Heat transfer to the water continues until the pressure doubles. NOTE: If needed use the closest value in tables 3 to avoid interpolation. Use 5 decimal digits when using specific volume. a.) Plot the process in a P-v-diagram with respect to saturations lines. b.) Fill de table below c.) Determine the total mass P(kPa) T(°C) v(m'/kg) h(kJ/kg) Phase 2 3.arrow_forwardAir at a volume of 0.03m³, is at a pressure of 3.5 bar and 35°C respectively. Determine: i. the mass of gas present; ii. the temperature of the gas if the pressure increases to 1.05 MN/m? and the volume remains constant. iii. the density of the gas if pressure increases to 1.05 MN/m and the temperature remains constant.arrow_forwardDuring processing in a steel mill, a 375kg steel casting at 800 degrees is quenched by plunging it into a 500-gal oil bath, which is initially 75 degrees . After the casting cools and the oil bath warms , what is the final tempertature of the two? The weight per unit volume of the oil is 7.5 lb/gal.arrow_forward
- A piston and cylinder device contains 0.15 kg of water at 25◦C (state 1). As shown in the figure, the piston weighs 500 N and has a cross-sectional area of 0.01 m2. Atmospheric pressure is 100 kPa. Heat is transferred to the cylinder from a reservoir at 200◦C, raising the piston. When the piston touches the stops, the volume inside the cylinder is Vmax= 0.165 m^3 (state 2). Heat continues to be transferred until the control mass reaches the boundary temperature (state 3). Determine: a) The initial pressure of the water (kPa) b) The temperature (Celsius) when the piston hits the stops c) The total work (kJ) d) The total heat transfer (kJ) e) The total entropy production for the entire process (kJ/K)arrow_forwardA vessel of fixed volume contains 5.6 moles of nitrogen. If the temperature changes from 145 Deg.C to 99Deg.C. Calculate the change in enthalpy. Give your answer in kJ to 2 s.f.arrow_forwardTwo kilogram of gas is confined in a 1m3 tank at 200 kpa and 88°C. What type of gas is in the tank? A. Helium C. Methane B. Ethane D. Ethenearrow_forward
- For a certain gas, R=0.277 kJ/kg-K and k=1.384. If 32.55 kJ are transferred to this gas at constant pressure in Question 5, what are the resulting temperature and volume? *Question 5: For a certain gas, R=0.277 kJ/kg-K and k=1.384. What mass of this gas would occupy a volume of 0.475 m3 at 518.14 kPa and 27.8°C?arrow_forwardPa Q 14.25: A glass jar which contains water is placed in the freezer. Once the water has frozen the jar is 87% full of ice, and its lid tightly shut. Then the jar is taken out of the freezer at 0 °C and left until it is at the same temperature as the surroundings (23.2 °C) is reached. What is the pressure inside the jar? Disregard the thermal expansion of the glass jar and the liquid water.arrow_forwardUse the Ideal Gas Law to show how pressure and temperature are related in the case of two footballs of nearly identical volume of gas, held at different temperatures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license