Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781260048766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.8, Problem 121RP
A 10-kg mass of superheated refrigerant-134a at 1.2 MPa and 70°C is cooled at constant pressure until it exists as a compressed liquid at 20°C.
- (a) Show the process on a T-v diagram with respect to saturation lines.
- (b) Determine the change in volume.
- (c) Find the change in total internal energy.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
1) A piston-cylinder assembly contains 10 kg of refrigerant 134a. Initially, 8 kg of SA134a is in the liquid phase and the temperature is -10°C. Then there is a slow heat transfer to SA-134a, the piston rises and the piston touches the stoppers when the volume is 400 liters.
(a) Show the phase change in the P-V diagram,
(b) the temperature of the system at the moment the piston contacts the stoppers,
(c) calculate the work done during the process.
Air at 25°C and 1.5 bar occupies 0.03 m3. The air is heated at constant volume until the pressure is 5 bar, and then cooled at constant pressure back to original temperature. Calculate the net heat flow from the air. Sketch also the p-V diagram of the process and process curves on your analysis.
1. A frictionless piston-cylinder device with cross-section area of 0.01 m² contains 0.5
m3
gaseous ammonia initially at 200 kPa and 135 °C. Now the gas is isothermally
compressed until the pressure increases to 800 psig. The surrounding pressure is 100
kPa and the gravitational force is 9.8 m/s?
a. What is the mass of the gas in kg
b. What is the mass of the piston in kg
c. Calculate the volume in m³ of the compressed gas
Chapter 3 Solutions
Thermodynamics: An Engineering Approach
Ch. 3.8 - A propane tank is filled with a mixture of liquid...Ch. 3.8 - Is iced water a pure substance? Why?Ch. 3.8 - What is the difference between saturated vapor and...Ch. 3.8 - What is the difference between saturated liquid...Ch. 3.8 - If the pressure of a substance is increased during...Ch. 3.8 - Is it true that water boils at higher temperature...Ch. 3.8 - What is the difference between the critical point...Ch. 3.8 - A househusband is cooking beef stew for his family...Ch. 3.8 - How does a boiling process at supercritical...Ch. 3.8 - What is quality? Does it have any meaning in the...
Ch. 3.8 - Does the amount of heat absorbed as 1 kg of...Ch. 3.8 - Does the reference point selected for the...Ch. 3.8 - What is the physical significance of hfg? Can it...Ch. 3.8 - Does hfg change with pressure? How?Ch. 3.8 - Is it true that it takes more energy to vaporize 1...Ch. 3.8 - Which process requires more energy: completely...Ch. 3.8 - In what kind of pot will a given volume of water...Ch. 3.8 - It is well known that warm air in a cooler...Ch. 3.8 - In the absence of compressed liquid tables, how is...Ch. 3.8 - A perfectly fitting pot and its lid often stick...Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - A 1.8-m3 rigid tank contains steam at 220C....Ch. 3.8 - One pound-mass of water fills a container whose...Ch. 3.8 - A pistoncylinder device contains 0.85 kg of...Ch. 3.8 - 10 kg of R-134a fill a 1.115-m3 rigid container at...Ch. 3.8 - What is the specific internal energy of water at...Ch. 3.8 - What is the specific volume of water at 5 MPa and...Ch. 3.8 - What is the specific volume of R-134a at 20C and...Ch. 3.8 - Refrigerant-134a at 200 kPa and 25C flows through...Ch. 3.8 - One kilogram of R-134a fills a 0.14-m3 weighted...Ch. 3.8 - One kilogram of water vapor at 200 kPa fills the...Ch. 3.8 - The temperature in a pressure cooker during...Ch. 3.8 - How much error would one expect in determining the...Ch. 3.8 - Water is to be boiled at sea level in a...Ch. 3.8 - Repeat Prob. 340 for a location at an elevation of...Ch. 3.8 - 10 kg of R-134a at 300 kPa fills a rigid container...Ch. 3.8 - 100 kg of R-134a at 200 kPa are contained in a...Ch. 3.8 - Water initially at 200 kPa and 300C is contained...Ch. 3.8 - Saturated steam coming off the turbine of a steam...Ch. 3.8 - A person cooks a meal in a 30-cm-diameter pot that...Ch. 3.8 - Water is boiled at 1 atm pressure in a...Ch. 3.8 - Repeat Prob. 347 for a location at 2000-m...Ch. 3.8 - Prob. 49PCh. 3.8 - A rigid tank with a volume of 1.8 m3 contains 40...Ch. 3.8 - A pistoncylinder device contains 0.005 m3 of...Ch. 3.8 - A 5-ft3 rigid tank contains a saturated mixture of...Ch. 3.8 - Superheated water vapor at 180 psia and 500F is...Ch. 3.8 - One kilogram of water fills a 150-L rigid...Ch. 3.8 - 10 kg of R-134a fill a 0.7-m3 weighted...Ch. 3.8 - A pistoncylinder device contains 0.6 kg of steam...Ch. 3.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 3.8 - Water is being heated in a vertical pistoncylinder...Ch. 3.8 - A rigid tank initially contains 1.4 kg saturated...Ch. 3.8 - A pistoncylinder device initially contains 50 L of...Ch. 3.8 - The spring-loaded pistoncylinder device shown in...Ch. 3.8 - A pistoncylinder device initially contains steam...Ch. 3.8 - Under what conditions is the ideal-gas assumption...Ch. 3.8 - What is the difference between mass and molar...Ch. 3.8 - Propane and methane are commonly used for heating...Ch. 3.8 - What is the specific volume of oxygen at 25 psia...Ch. 3.8 - A 100-L container is filled with 1 kg of air at a...Ch. 3.8 - A mass of 1 lbm of argon is maintained at 200 psia...Ch. 3.8 - A 400-L rigid tank contains 5 kg of air at 25C....Ch. 3.8 - The pressure gage on a 2.5-m3 oxygen tank reads...Ch. 3.8 - A spherical balloon with a diameter of 9 m is...Ch. 3.8 - Reconsider Prob. 373. Using appropriate software,...Ch. 3.8 - A 1-m3 tank containing air at 10C and 350 kPa is...Ch. 3.8 - A mass of 10 g of oxygen fill a weighted...Ch. 3.8 - A mass of 0.1 kg of helium fills a 0.2 m3 rigid...Ch. 3.8 - A rigid tank whose volume is unknown is divided...Ch. 3.8 - A rigid tank contains 20 lbm of air at 20 psia and...Ch. 3.8 - In an informative article in a magazine it is...Ch. 3.8 - What is the physical significance of the...Ch. 3.8 - Determine the specific volume of refrigerant-134a...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of nitrogen gas at...Ch. 3.8 - Prob. 88PCh. 3.8 - Carbon dioxide gas enters a pipe at 3 MPa and 500...Ch. 3.8 - Prob. 90PCh. 3.8 - A 0.016773-m3 tank contains 1 kg of...Ch. 3.8 - Prob. 92PCh. 3.8 - What is the percentage of error involved in...Ch. 3.8 - What is the physical significance of the two...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - A 3.27-m3 tank contains 100 kg of nitrogen at 175...Ch. 3.8 - Nitrogen at 150 K has a specific volume of...Ch. 3.8 - A 1-m3 tank contains 2.841 kg of steam at 0.6 MPa....Ch. 3.8 - Prob. 103PCh. 3.8 - Prob. 104PCh. 3.8 - On a certain day, the temperature and relative...Ch. 3.8 - Prob. 106PCh. 3.8 - Consider two rooms that are identical except that...Ch. 3.8 - A thermos bottle is half-filled with water and is...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Prob. 111RPCh. 3.8 - Prob. 112RPCh. 3.8 - The gage pressure of an automobile tire is...Ch. 3.8 - A tank contains argon at 600C and 200 kPa gage....Ch. 3.8 - The combustion in a gasoline engine may be...Ch. 3.8 - Prob. 116RPCh. 3.8 - Prob. 117RPCh. 3.8 - A rigid tank with a volume of 0.117 m3 contains 1...Ch. 3.8 - A 9-m3 tank contains nitrogen at 17C and 600 kPa....Ch. 3.8 - A 10-kg mass of superheated refrigerant-134a at...Ch. 3.8 - A 4-L rigid tank contains 2 kg of saturated...Ch. 3.8 - Prob. 123RPCh. 3.8 - A tank whose volume is unknown is divided into two...Ch. 3.8 - Prob. 125RPCh. 3.8 - A tank contains helium at 37C and 140 kPa gage....Ch. 3.8 - Prob. 127RPCh. 3.8 - On the property diagrams indicated below, sketch...Ch. 3.8 - Ethane at 10 MPa and 100C is heated at constant...Ch. 3.8 - Steam at 400C has a specific volume of 0.02 m3/kg....Ch. 3.8 - Consider an 18-m-diameter hot-air balloon that,...Ch. 3.8 - Prob. 135FEPCh. 3.8 - A 3-m3 rigid vessel contains steam at 2 MPa and...Ch. 3.8 - Prob. 137FEPCh. 3.8 - Water is boiled at 1 atm pressure in a coffeemaker...Ch. 3.8 - Prob. 139FEPCh. 3.8 - Water is boiled in a pan on a stove at sea level....Ch. 3.8 - A rigid tank contains 2 kg of an ideal gas at 4...Ch. 3.8 - The pressure of an automobile tire is measured to...Ch. 3.8 - Consider a sealed can that is filled with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (9)A piston-cylinder device initially contains steam at 5 MPa and 450°C. Now, steam loses heat to the surroundings and the piston moves down hitting a set of stops at which point the cylinder contains saturated vapor water. The cooling continues until the cylinder contains water at 180°C. Show the process on a T-v diagram with respect to saturation lines showing the three states it passes through. Also, put the values of temperature, pressure and specific volume for each state on the figure. Steamarrow_forwardWater initially at 200 kPa and 300°C is contained in a piston-cylinder device fitted with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then the water continues to cool until the pressure is 100 kPa. Water 200 kPa 300°C Find the overall change in internal energy between the initial and final states per unit mass of water. Use data from the tables. (You must provide an answer before moving on to the next part.) The overall change in internal energy is K kJ/kg.arrow_forwardProblem #3.15 ne spring-loaded piston-cylinder device shown is filled with 0.5 kg of water vapor that IS initially at 4 MPa and 400°C. Initially, the spring exerts no force against the piston. ie water now undergoes a process until its volume is one-half of the original volume and the temperature drops to 220 °C. Sketch the process on a p-v diagram relative to the saturation lines and critical point. 0) Sketch the process on a T-v diagram relative to the saturation lines and critical point. c.) Calculate the final pressure of the water. d.) Calculate the final specific enthalpy of the water. [1721.5 kJ/kg) Spring Fluidarrow_forward
- When a system that use refrigerant-134a at temperature of 95 C at pressure of 1.4 kPa is cooled at constant volume until the pressure is being reduced to 1.15 kPa. (a) Show the process on a T-v diagram with respect to saturation lines. (b) Determine the change in volume. (c) Find the change in total internal energy.arrow_forwardThe tank of a leaky air compressor originally holds 90L of air at 33°C and 225 kPa. During a compression process, 4 grams of air is lost; the remaining air occupies 42 L at 550 kapa. What is the temperature of the remaining air?arrow_forwardConsider 0.5 kg of Refrigerant -134a contained in a piston-cylinder assembly with initial temperature of 80°C and pressure 7 bar. An adiabatic expansion brings the system to 48°C and 2 bar. A subsequent isobaric compression reduces the volume of the system to half of its initial volume. a) Create a p-v diagram (with dome shape included) and indicate the location of different states and processes. The diagram does not need to be on scale. b) Calculate the work involved in adiabatic expansion.arrow_forward
- An ideal gas initially occupying 0.020 m3 at 1.0 MPa is quasistatically expanded inside a piston-cylinder device at a constant pressure until its volume doubles. Next the expansion is continued at constant volume till the pressure reaches half of the initial pressure. Finally it is brought back to the initial state in a polytropic process with exponent n=1.6. (a) Draw the processes on a P-v diagram. (b) Calculate the total work for the processes. (c) Calculate the total heat transferred for the processes. (d) What is the difference between the initial and final temperature?arrow_forward6. Two kilograms of water is contained in a piston-cylinder loaded with a linear spring and the outside atmosphere. Initial the water is at 200 kPa, and V = 0.2 m³. Heat is now added until the volume grows to 0.8 m³, and the temperature increases to 600°C. Determine the following: (a) Initial phase of the system (calculate quality if appropriate). (b) Find the final pressure of the system. Show how you determine the final state and which table to look for the pressure. (c) Show the process on a P-v diagram and explain why the process is linear.arrow_forwardAmmonia at 0°C with a quality of 60% is containedin a rigid 200-L tank. The tank and ammonia arenow heated to a final pressure of 1 MPa. Determinethe heat transfer for the process.arrow_forward
- (b) A 0.15 kg of air contained in a piston-cylinder device where the initial pressure was 2000 kPa and the temperature was 350°C. The substance has undergone several expansion and compression processes. The air is first expanded at a constant temperature to a pressure of 500 kPa and then compressed polytropically with a polytropic exponent of 1.2 to the initial pressure, and finally compressed isobarically to the initial state. Determine the boundary work for each process and the net work of the cycle.arrow_forwarda certain quantity of air is initially at 200 kpa and 35 degree c. if the final state after a thermodynamic process is 120 kPa and 10 degree celcius, find the polytropic index of the process and describe what type of process this index representsarrow_forwardPlease assist with this question on thermodynamicsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license