General, Organic, and Biological Chemistry: Structures of Life (5th Edition)
5th Edition
ISBN: 9780321967466
Author: Karen C. Timberlake
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.7, Problem 3.51QAP
Using the values for the heat of fusion, specific heat of water, and/or heat of vaporization, calculate the amount of heat energy in each of the following:
- joules needed to melt 50.0 g of ice at 0 °C and to warm the liquid to 65.0 °C
- kilocalories released when 15.0 g of steam condenses at 100 °C and the liquid cools to 0 °C
- kilojoules needed to melt 24.0 g of ice at 0 °C, warm the liquid to 100 °C, and change it to steam at 100 °C
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
General, Organic, and Biological Chemistry: Structures of Life (5th Edition)
Ch. 3.1 - Classify each of the following as a pure substance...Ch. 3.1 - Classify each of the following as a pure substance...Ch. 3.1 - Classify each of the following pure substances as...Ch. 3.1 - Classify each of the following pure substances as...Ch. 3.1 - 3.5 Classify each of the following mixtures as...Ch. 3.1 - Classify each of the following mixtures as...Ch. 3.2 - Indicate whether each of the following describes a...Ch. 3.2 - Indicate whether each of the following describes a...Ch. 3.2 - Prob. 3.9QAPCh. 3.2 - Describe each of the following as a physical or...
Ch. 3.2 - Prob. 3.11QAPCh. 3.2 - What type of change, physical or chemical, takes...Ch. 3.2 - Prob. 3.13QAPCh. 3.2 - Describe each property of the element zirconium as...Ch. 3.3 - Prob. 3.15QAPCh. 3.3 - Prob. 3.16QAPCh. 3.3 - Prob. 3.17QAPCh. 3.3 - Prob. 3.18QAPCh. 3.3 - Prob. 3.19QAPCh. 3.3 - Prob. 3.20QAPCh. 3.4 - Discuss the changes in the potential and kinetic...Ch. 3.4 - Prob. 3.22QAPCh. 3.4 - Prob. 3.23QAPCh. 3.4 - Prob. 3.24QAPCh. 3.4 - Prob. 3.25QAPCh. 3.4 - Prob. 3.26QAPCh. 3.5 - Calculate the kilocalories for each of the...Ch. 3.5 - Prob. 3.28QAPCh. 3.5 - Using the energy values for foods (see Table 3.7),...Ch. 3.5 - Prob. 3.30QAPCh. 3.5 - Prob. 3.31QAPCh. 3.5 - Prob. 3.32QAPCh. 3.5 - Prob. 3.33QAPCh. 3.5 - Prob. 3.34QAPCh. 3.6 - If the same amount of heat is supplied to samples...Ch. 3.6 - Prob. 3.36QAPCh. 3.6 - Prob. 3.37QAPCh. 3.6 - Use the heat equation to calculate the energy for...Ch. 3.6 - Use the heat equation to calculate the energy. in...Ch. 3.6 - Prob. 3.40QAPCh. 3.7 - Prob. 3.41QAPCh. 3.7 - Prob. 3.42QAPCh. 3.7 - Prob. 3.43QAPCh. 3.7 - Prob. 3.44QAPCh. 3.7 - Prob. 3.45QAPCh. 3.7 - Prob. 3.46QAPCh. 3.7 - Prob. 3.47QAPCh. 3.7 - Prob. 3.48QAPCh. 3.7 - Prob. 3.49QAPCh. 3.7 - Prob. 3.50QAPCh. 3.7 - Using the values for the heat of fusion, specific...Ch. 3.7 - Prob. 3.52QAPCh. 3.7 - Prob. 3.53QAPCh. 3.7 - Prob. 3.54QAPCh. 3.7 - Prob. 3.55QAPCh. 3.7 - Prob. 3.56QAPCh. 3 - Prob. 3.57UTCCh. 3 - Prob. 3.58UTCCh. 3 - Prob. 3.59UTCCh. 3 - Prob. 3.60UTCCh. 3 - Prob. 3.61UTCCh. 3 - Prob. 3.62UTCCh. 3 - Prob. 3.63UTCCh. 3 - Prob. 3.64UTCCh. 3 - Prob. 3.65UTCCh. 3 - Prob. 3.66UTCCh. 3 - Prob. 3.67UTCCh. 3 - Prob. 3.68UTCCh. 3 - Prob. 3.69AQAPCh. 3 - Prob. 3.70AQAPCh. 3 - Prob. 3.71AQAPCh. 3 - Prob. 3.72AQAPCh. 3 - Prob. 3.73AQAPCh. 3 - Prob. 3.74AQAPCh. 3 - Prob. 3.75AQAPCh. 3 - Prob. 3.76AQAPCh. 3 - Prob. 3.77AQAPCh. 3 - Prob. 3.78AQAPCh. 3 - Prob. 3.79AQAPCh. 3 - Prob. 3.80AQAPCh. 3 - Prob. 3.81AQAPCh. 3 - Prob. 3.82AQAPCh. 3 - 3.83 On a hot day, the bleach sand gets hot but...Ch. 3 - Prob. 3.84AQAPCh. 3 - Prob. 3.85AQAPCh. 3 - Prob. 3.86AQAPCh. 3 - Prob. 3.87AQAPCh. 3 - Prob. 3.88AQAPCh. 3 - Prob. 3.89AQAPCh. 3 - Prob. 3.90AQAPCh. 3 - If you want to lose 1 lb of “body fat,” which is...Ch. 3 - Prob. 3.92AQAPCh. 3 - Prob. 3.93AQAPCh. 3 - Prob. 3.94AQAPCh. 3 - Prob. 3.95CQCh. 3 - Prob. 3.96CQCh. 3 - Prob. 3.97CQCh. 3 - Prob. 3.98CQCh. 3 - Prob. 3.99CQCh. 3 - Prob. 3.100CQCh. 3 - Prob. 3.101CQCh. 3 - Prob. 3.102CQCh. 3 - Prob. 3.103CQCh. 3 - Prob. 3.104CQCh. 3 - Prob. 1CICh. 3 - Prob. 2CICh. 3 - Prob. 3CICh. 3 - Prob. 4CICh. 3 - Prob. 5CICh. 3 - Prob. 6CI
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How much heat, in joules and in calories, is required to heat a 28.4-g (1-oz) ice cube from 23.0 C to 1.0 C?arrow_forwardAgriculture Water is sprayed on oranges during afrosty night. If an average of 11.8 g of water freezes oneach orange, how much heat is released?arrow_forwardClassify each process as exothermic or endothermic. (a) ice melts (b) gasoline burns (c) steam condenses (d) reactants products, H = 50 kJarrow_forward
- The BTU (British thermal unit) is the unit of energy most commonly used in the United States. One joule=9.48104 BTU. What is the specific heat of water in BTU/lbF? (Specific heat of water is 4.18 J/g C.)arrow_forwardHow much heat is evolved when 1255 g of water condensesto a liquid at 100°C?arrow_forwardA 500-mL bottle of water at room temperature and a 2-L bottle of water at the same temperature were placed in a refrigerator. After 30 minutes, the 500-mL bottle of water had cooled to the temperature of the refrigerator. An hour later, the 2-L of water had cooled to the same temperature. When asked which sample of water lost the most heat, one student replied that both bottles lost the same amount of heat because they started at the same temperature and finished at the same temperature. A second student thought that the 2-L bottle of water lost more heat because there was more water. A third student believed that the 500-mL bottle of water lost more heat because it cooled more quickly. A fourth student thought that it was not possible to tell because we do not know the initial temperature and the final temperature of the water. Indicate which of these answers is correct and describe the error in each of the other answers.arrow_forward
- An iron skillet weighing 1.63 kg is heated on a stove to 178C. Suppose the skillet is cooled to room temperature, 21C. How much heat energy (in joules) must be removed to affect this cooling? The specific heat of iron is 0.449 J/(gC).arrow_forwardYou have two samples of different metals, metal A and metal B, each having the same mass. You heat both metals to 95C and then place each one into separate beakers containing the same quantity of water at 25C. a You measure the temperatures of the water in the two beakers when each metal has cooled by 10C and find that the temperature of the water with metal A is higher than the temperature of the water with metal B. Which metal has the greater specific heat? Explain. b After waiting a period of time, the temperature of the water in each beaker rises to a maximum value. In which beaker does the water temperature rise to the higher value, the one with metal A or the one with metal B? Explain.arrow_forwardHow much heat is required to raise the temperature of 100. grams of water from 25C near room temperature to 100.C its boiling point? The specific heat of water is approximately 4.2Jperg-K. a.3.2104J b.32J c.4.2104J d.76Jarrow_forward
- A 110.-g sample of copper (specific heat capacity = 0.20 J/C g) is heated to 82.4C and then placed in a container of water at 22.3C. The final temperature of the water and copper is 24.9C. What is the mass of the water in the container, assuming that all the heat lost by the copper is gained by the water?arrow_forwardA sample of ammonia (Hsolid=5.66kJ/mol) liberates5.66 kJ of heat as it solidifies at its melting point.What is the mass of the sample?arrow_forwardA 45-g aluminum spoon (specific heat 0.88 J/g C) at 24 C is placed in 180 mL (180 g) of coffee at 85 C and the temperature of the two become equal. (a) What is the final temperature when the two become equal? Assume that coffee has the same specific heat as water. (b) The first time a student solved this problem she got an answer of 88 C. Explain why this is clearly an incorrect answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY