Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 38RQ
What are some of the attractive features of the shielded metal arc welding process?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.
9.
10.
The centrifugal tension in belts
(a) increases power transmitted
(b) decreases power transmitted
(c) have no effect on the power transmitted
(d) increases power transmitted upto a certain speed and then decreases
When the belt is stationary, it is subjected to some tension, known as initial tension. The value of this
tension is equal to the
(a) tension in the tight side of the belt
(b) tension in the slack side of the belt
(c) sum of the tensions in the tight side and slack side of the belt
(d) average tension of the tight side and slack side of the belt
The relation between the pitch of the chain (p) and pitch circle diameter of the sprocket (d) is given by
60°
(a) p=d sin
(c) p=d sin
(120°
T
where T Number of teeth on the sprocket.
90°
(b) p=d sin
T
180°
(d) p=d sin
T
OBJECTIVE TYPE QUESTIONS
1.
The maximum fluctuation of energy is the
2.
(a) sum of maximum and minimum energies
(b) difference between the maximum and minimum energies
(c) ratio of the maximum energy and minimum energy
(d) ratio of the mean resisting torque to the work done per cycle
In a turning moment diagram, the variations of energy above and below the mean resisting torque line
is called
(a) fluctuation of energy
(b) maximum fluctuation of energy
(c) coefficient of fluctuation of energy
(d) none of the above
Chapter 16: Turning Moment Diagrams and Flywheel 611
The ratio of the maximum fluctuation of speed to the mean speed is called
3.
(a) fluctuation of speed
(c) coefficient of fluctuation of speed
4.
(b) maximum fluctuation of speed
(a) none of these
The ratio of the maximum fluctuation of energy to the.......... is called coefficient of fluctuation of
energy.
(a) minimum fluctuation of energy
(b) work done per cycle
The maximum fluctuation of energy in a flywheel is equal to
5.…
OBJECTIVE TYPE QUESTIONS
1.
The velocity ratio of two pulleys connected by an open belt or crossed belt is
2.
(a) directly proportional to their diameters
(b) inversely proportional to their diameters
(c) directly proportional to the square of their diameters
(d) inversely proportional to the square of their diameters
Two pulleys of diameters d, and d, and at distance x apart are connected by means of an open belt
drive. The length of the belt is
(a)(d+d₁)+2x+
(d₁+d₂)²
4x
(b)(d₁-d₂)+2x+
(d₁-d₂)²
4x
(c)(d₁+d₂)+ +2x+
(d₁-d₂)²
4x
(d)(d-d₂)+2x+
(d₁ +d₂)²
4x
3.
In a cone pulley, if the sum of radii of the pulleys on the driving and driven shafts is constant, then
(a) open belt drive is recommended
(b) cross belt drive is recommended
(c) both open belt drive and cross belt drive are recommended
(d) the drive is recommended depending upon the torque transmitted
Due to slip of the belt, the velocity ratio of the belt drive
4.
(a) decreases
5.
(b) increases
(c) does not change
When two pulleys…
Chapter 36 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 36 - What is the principal fuel gas used in oxyfuel-gas...Ch. 36 - Why does an oxyfuel-gas welding torch usually have...Ch. 36 - What is the location of the maximum temperature in...Ch. 36 - What function or functions are performed by the...Ch. 36 - What three types of flames can be produced by...Ch. 36 - Which type of oxyfuel flame is most commonly used?Ch. 36 - What are some of the alternative fuels (other than...Ch. 36 - Why might a welder want to change the tip size (or...Ch. 36 - What is filler metal, and why might it be needed...Ch. 36 - What is the role of a welding flux?
Ch. 36 - Oxyfuel-gas welding has a low rate of heat input....Ch. 36 - For what types of applications is ox\fuel-gas...Ch. 36 - What are some of the more attractive features of...Ch. 36 - How does pressure gas welding differ from the...Ch. 36 - In what way does the torch cutting of ferrous...Ch. 36 - Why might it be possible to use only an oxygen...Ch. 36 - How does an oxyacetylene cutting torch differ from...Ch. 36 - What are some of the ways in which cutting torches...Ch. 36 - When might stack cutting be an attractive process?Ch. 36 - What modification must be incorporated into a...Ch. 36 - If a curved plate is to be straightened by flame...Ch. 36 - Why does the flame-straightening process not work...Ch. 36 - What sorts of problems plagued early attempts to...Ch. 36 - What are the three basic types of current and...Ch. 36 - What is the attractive feature of variable...Ch. 36 - What is the difference between a consumable and...Ch. 36 - What are the three types of metal transfer that...Ch. 36 - What are some of the process variables that must...Ch. 36 - What are the four primary consumable-electrode...Ch. 36 - What are some general properties of the...Ch. 36 - What are some of the functions of the electrode...Ch. 36 - How are welding electrodes commonly classified,...Ch. 36 - Why are shielded metal arc electrodes often baked...Ch. 36 - What are the functions of the fluxing constituents...Ch. 36 - What benefit can be obtained by placing iron...Ch. 36 - Why are shielded metal arc electrodes generally...Ch. 36 - Why is the shielded metal arc welding process...Ch. 36 - What are some of the attractive features of the...Ch. 36 - What is the advantage of placing the flux in the...Ch. 36 - What feature enables the welding current in FCAW...Ch. 36 - What are some of the advantages of gas metal arc...Ch. 36 - Describe the relative performance of argon,...Ch. 36 - For what welding conditions would short circuit...Ch. 36 - What is the least desired mode of metal transfer?Ch. 36 - Which of the metal transfer mechanisms is most...Ch. 36 - Describe the metal transfer that occurs during...Ch. 36 - What are some of the benefits that can be obtained...Ch. 36 - What are some of the attractive features of gas...Ch. 36 - What are some of the primary process variables in...Ch. 36 - What is the attractive feature of advanced gas...Ch. 36 - What other gas metal arc welding modifications...Ch. 36 - What benefits can be gained by using a rectangular...Ch. 36 - What are some of the functions of the flux in...Ch. 36 - What are some of the attractive features of...Ch. 36 - What is the primary goal or objective in bulk...Ch. 36 - What is the current (or proper) designation for...Ch. 36 - What types of shielding gases are used in the gas...Ch. 36 - What are some of the features that must be...Ch. 36 - What can be done to increase the rate of filler...Ch. 36 - What are some of the attractive features of gas...Ch. 36 - For the GTAW process, what are the attractive...Ch. 36 - What are some of the advantages of employing a...Ch. 36 - How are the spot welds produced by gas tungsten...Ch. 36 - How is the heating of the workpiece during plasma...Ch. 36 - What are the two different gas flows in plasma arc...Ch. 36 - What are some of the attractive features of plasma...Ch. 36 - What is the keyhole effect in plasma arc welding?Ch. 36 - What is the primary difference between plasma arc...Ch. 36 - What is the primary objective of stud welding?Ch. 36 - What is the function of the ceramic ferrule placed...Ch. 36 - 71- Describe the sequence of activity in flash...Ch. 36 - How is percussion welding different from flash...Ch. 36 - Prob. 73RQCh. 36 - Describe the ideal thermal cut.Ch. 36 - What is the purpose of the oxygen in oxygen arc...Ch. 36 - Why is plasma arc cutting an attractive wav of...Ch. 36 - What techniques can be used to constrict the arc...Ch. 36 - Compared to oxyfuel cutting, what are some of the...Ch. 36 - How can a nontransferred arc plasma torch be used...Ch. 36 - What are some of the attractive features of...Ch. 36 - What are some of the benefits of performing plasma...Ch. 36 - Describe the relative size of the heat-affected...Ch. 36 - Why might the residual stresses induced during...Ch. 36 - Prob. 84RQCh. 36 - What are typical arc welding currents and...Ch. 36 - What are the attractive features or benefits of an...Ch. 36 - What are jigs, fixtures or positioners, and how...Ch. 36 - Describe thermal deburring.Ch. 36 - When welds fail, it is not uncommon for the...Ch. 36 - For each of the conditions in Problem l, could...Ch. 36 - Using the Internet or technical literature,...Ch. 36 - Using the Internet or technical literature,...Ch. 36 - Identify a new or recent EPA or OSHA regulation...Ch. 36 - Magnesium, while not as strong as steel or...Ch. 36 - Numerous joints appear in bicycle frames, some of...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The overhang beam is subjected to the uniform distributed load having an intensity of w=50 kN/m. Determine the ...
Mechanics of Materials (10th Edition)
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
How Old Would You Be on Mercury? The length of a Mercurian year is 88 Earth days. Write a program that requests...
Introduction To Programming Using Visual Basic (11th Edition)
What output is produced by the following code?
Java: An Introduction to Problem Solving and Programming (8th Edition)
Use a comment to state that a program performs a sample payroll calculation.
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
The ____________ is always transparent.
Web Development and Design Foundations with HTML5 (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q3: (10 MARKS) A piston with a weight of 29.4 N is supported by a spring and dashpot. A dashpot of damping coefficient c = 275 N.s/m acts in parallel with the spring of stiffness k = 2400 N/m. A fluctuating pressure p = 960 sin 30t N/m² acts on the piston, whose top surface area is 0.05 m². Determine the steady-state displacement as a function of time and the maximum force transmitted to the base. P=Po sin cot Warrow_forward9. Design a spur gear drive required to transmit 45 kW at a pinion speed of 800 r.p.m. The velocity ratio is 3.5 : 1. The teeth are 20° full-depth involute with 18 teeth on the pinion. Both the pinion and gear are made of steel with a maximum safe static stress of 180 MPa. Assume a safe stress of 40 MPa for the material of the shaft and key. 10. Design a pair of spur gears with stub teeth to transmit 55 kW from a 175 mm pinion running at 2500 r.p.m. to a gear running at 1500 r.p.m. Both the gears are made of steel having B.H.N. 260. Approximate the pitch by means of Lewis equation and then adjust the dimensions to keep within the limits set by the dynamic load and wear equation.arrow_forward7. A motor shaft rotating at 1440 r.p.m. has to transmit 15 kW to a low speed shaft rotating at 500 r.p.m. The teeth are 20° involute with 25 teeth on the pinion. Both the pinion and gear are made of cast iron with a maximum safe stress of 56 MPa. A safe stress of 35 MPa may be taken for the shaft on which the gear is mounted. Design and sketch the spur gear drive to suit the above conditions. The starting torque may be assumed as 1,25 times the running torque. Ruins 20 LW at 100 nm to another shaft running approxiarrow_forward
- 6. A two stage reduction drive is to be designed to transmit 2 kW; the input speed being 960 r.p.m. and overall reduction ratio being 9. The drive consists of straight tooth spur gears only, the shafts being spaced 200 mm apart, the input and output shafts being co-axial.arrow_forward2 A metal block of mass m = 10 kg is sliding along a frictionless surface with an initial speed Vo, as indicated below. The block then slides above an electromagnetic brake that applies a force FEB to the block, opposing its motion. The magnitude of the electromagnetic force varies quadratically with the distance moved along the brake (x): 10 FEB = kx², with k = 5 N m² V₁ = 8 m/s m = 10 kg FEB Frictionless surface Electromagnetic brake ⇒x Determine how far the block slides along the electromagnetic brake before stopping, in m.arrow_forwardQ1: Determine the length, angle of contact, and width of a 9.75 mm thick leather belt required to transmit 15 kW from a motor running at 900 r.p.m. The diameter of the driving pulley of the motor is 300 mm. The driven pulley runs at 300 r.p.m. and the distance between the centers of two pulleys is 3 meters. The density of the leather is 1000 kg/m³. The maximum allowable stress in the leather is 2.5 MPa. The coefficient of friction between the leather and pulley is 0.3. Assume open belt drive.arrow_forward
- 5. A 15 kW and 1200 r.p.m. motor drives a compressor at 300 r.p.m. through a pair of spur gears having 20° stub teeth. The centre to centre distance between the shafts is 400 mm. The motor pinion is made of forged steel having an allowable static stress as 210 MPa, while the gear is made of cast steel having allowable static stress as 140 MPa. Assuming that the drive operates 8 to 10 hours per day under light shock conditions, find from the standpoint of strength, 1. Module; 2. Face width and 3. Number of teeth and pitch circle diameter of each gear. Check the gears thus designed from the consideration of wear. The surface endurance limit may be taken as 700 MPa. [Ans. m = 6 mm; b= 60 mm; Tp=24; T=96; Dp = 144mm; DG = 576 mm]arrow_forward4. G A micarta pinion rotating at 1200 r.p.m. is to transmit 1 kW to a cast iron gear at a speed of 192 r.p.m. Assuming a starting overload of 20% and using 20° full depth involute teeth, determine the module, number of teeth on the pinion and gear and face width. Take allowable static strength for micarta as 40 MPa and for cast iron as 53 MPa. Check the pair in wear.arrow_forwardI want to solve these choicesarrow_forward
- 2. A spur gear made of bronze drives a mid steel pinion with angular velocity ratio of 32: 1. The pressure angle is 14½. It transmits 5 kW at 1800 r.p.m. of pinion. Considering only strength, design the smallest diameter gears and find also necessary face width. The number of teeth should not be less than 15 teeth on either gear. The elastic strength of bronze may be taken as 84 MPa and of steel as 105 MPa. Lewis factor for 14½½ pressure angle may be taken 0.684 0.124 y = No. of teeth as [Ans. m 3 mm; b= 35 mm; Dp = 48 mm; D= 168 mm]arrow_forwardQ2. Determine the safety factors for the bracket rod shown in Figure 2 based on both the distortion-energy theory and the maximum shear theory and compare them. Given: The material is 2024-T4 aluminum with a yield strength of 47 000 psi. The rod length /= 6 in. and arm a = 8 in. The rod outside diameter od 1.5 in., id = 1 in, h=2 in., t=0.5 in., Load F= 1000 lb. Assumptions: The load is static and the assembly is at room temperature. Consider shear due to transverse loading as well as other stresses. (Note: solve in SI units) wall tube Figure 2 armarrow_forwardThe question has been set up with all the cuts needed to accurately derive expressions for V(x) and M(x). Using the cuts free body diagrams set up below, derive expressions for V(x) and M(x). If you use the method of cuts then validate your answers using calculus or vice versa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY