
Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 23RQ
What sorts of problems plagued early attempts to develop arc welding?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The single degree of freedom (SDOF) system that you studied under free vibration in Assignment #3 - Laboratory Component has been subjected to a strong ground motion. The acceleration at the base (excitation) and the acceleration at the roof (response) of the SDOF system was recorded with sampling rate 50 Hz (50 samples per second, or dt= 0.02 seconds). The file ElCentro.txt includes the two columns of acceleration data. The first column lists the acceleration at the base of the SDOF system. The second column lists the acceleration at the roof of the SDOF system. (a) Plot the time histories of the recorded accelerations at the base and at the roof of the SDOF system. (b) Compute the acceleration, velocity and displacement time histories of the roof of the SDOF system subjected to the recorded base acceleration using the Central Difference method. Plot the accel- eration, velocity and displacement time histories. Plot the restoring force, the damping force, and the inertia force time…
The single degree of freedom (SDOF) system that you studied under free vibration in Assignment #3 - Laboratory Component has been subjected to a strong ground motion. The acceleration at the base (excitation) and the acceleration at the roof (response) of the SDOF system was recorded with sampling rate 50 Hz (50 samples per second, or dt= 0.02 seconds). The file ElCentro.txt includes the two columns of acceleration data. The first column lists the acceleration at the base of the SDOF system. The second column lists the acceleration at the roof of the SDOF system. (a) Plot the time histories of the recorded accelerations at the base and at the roof of the SDOF system. (b) Compute the acceleration, velocity and displacement time histories of the roof of the SDOF system subjected to the recorded base acceleration using the Central Difference method. Plot the accel- eration, velocity and displacement time histories. Plot the restoring force, the damping force, and the inertia force time…
A tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 43%.
60
Su = 66 ksi
Stress σ (ksi)
40 B
20
0
0
0
T
H
Sy = 39 ksi
Se = 36 ksi
Hot-rolled 1020 steel
F
10 20 30 40
50 60 70 80 90 100 110 120 130 140 150 160
Strain € (%)
T
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Area ratio R
0.1
0.2
0.3
0.4
0.5
Area reduction A,
What value of strain is applicable to this location?
0.6
Chapter 36 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 36 - What is the principal fuel gas used in oxyfuel-gas...Ch. 36 - Why does an oxyfuel-gas welding torch usually have...Ch. 36 - What is the location of the maximum temperature in...Ch. 36 - What function or functions are performed by the...Ch. 36 - What three types of flames can be produced by...Ch. 36 - Which type of oxyfuel flame is most commonly used?Ch. 36 - What are some of the alternative fuels (other than...Ch. 36 - Why might a welder want to change the tip size (or...Ch. 36 - What is filler metal, and why might it be needed...Ch. 36 - What is the role of a welding flux?
Ch. 36 - Oxyfuel-gas welding has a low rate of heat input....Ch. 36 - For what types of applications is ox\fuel-gas...Ch. 36 - What are some of the more attractive features of...Ch. 36 - How does pressure gas welding differ from the...Ch. 36 - In what way does the torch cutting of ferrous...Ch. 36 - Why might it be possible to use only an oxygen...Ch. 36 - How does an oxyacetylene cutting torch differ from...Ch. 36 - What are some of the ways in which cutting torches...Ch. 36 - When might stack cutting be an attractive process?Ch. 36 - What modification must be incorporated into a...Ch. 36 - If a curved plate is to be straightened by flame...Ch. 36 - Why does the flame-straightening process not work...Ch. 36 - What sorts of problems plagued early attempts to...Ch. 36 - What are the three basic types of current and...Ch. 36 - What is the attractive feature of variable...Ch. 36 - What is the difference between a consumable and...Ch. 36 - What are the three types of metal transfer that...Ch. 36 - What are some of the process variables that must...Ch. 36 - What are the four primary consumable-electrode...Ch. 36 - What are some general properties of the...Ch. 36 - What are some of the functions of the electrode...Ch. 36 - How are welding electrodes commonly classified,...Ch. 36 - Why are shielded metal arc electrodes often baked...Ch. 36 - What are the functions of the fluxing constituents...Ch. 36 - What benefit can be obtained by placing iron...Ch. 36 - Why are shielded metal arc electrodes generally...Ch. 36 - Why is the shielded metal arc welding process...Ch. 36 - What are some of the attractive features of the...Ch. 36 - What is the advantage of placing the flux in the...Ch. 36 - What feature enables the welding current in FCAW...Ch. 36 - What are some of the advantages of gas metal arc...Ch. 36 - Describe the relative performance of argon,...Ch. 36 - For what welding conditions would short circuit...Ch. 36 - What is the least desired mode of metal transfer?Ch. 36 - Which of the metal transfer mechanisms is most...Ch. 36 - Describe the metal transfer that occurs during...Ch. 36 - What are some of the benefits that can be obtained...Ch. 36 - What are some of the attractive features of gas...Ch. 36 - What are some of the primary process variables in...Ch. 36 - What is the attractive feature of advanced gas...Ch. 36 - What other gas metal arc welding modifications...Ch. 36 - What benefits can be gained by using a rectangular...Ch. 36 - What are some of the functions of the flux in...Ch. 36 - What are some of the attractive features of...Ch. 36 - What is the primary goal or objective in bulk...Ch. 36 - What is the current (or proper) designation for...Ch. 36 - What types of shielding gases are used in the gas...Ch. 36 - What are some of the features that must be...Ch. 36 - What can be done to increase the rate of filler...Ch. 36 - What are some of the attractive features of gas...Ch. 36 - For the GTAW process, what are the attractive...Ch. 36 - What are some of the advantages of employing a...Ch. 36 - How are the spot welds produced by gas tungsten...Ch. 36 - How is the heating of the workpiece during plasma...Ch. 36 - What are the two different gas flows in plasma arc...Ch. 36 - What are some of the attractive features of plasma...Ch. 36 - What is the keyhole effect in plasma arc welding?Ch. 36 - What is the primary difference between plasma arc...Ch. 36 - What is the primary objective of stud welding?Ch. 36 - What is the function of the ceramic ferrule placed...Ch. 36 - 71- Describe the sequence of activity in flash...Ch. 36 - How is percussion welding different from flash...Ch. 36 - Prob. 73RQCh. 36 - Describe the ideal thermal cut.Ch. 36 - What is the purpose of the oxygen in oxygen arc...Ch. 36 - Why is plasma arc cutting an attractive wav of...Ch. 36 - What techniques can be used to constrict the arc...Ch. 36 - Compared to oxyfuel cutting, what are some of the...Ch. 36 - How can a nontransferred arc plasma torch be used...Ch. 36 - What are some of the attractive features of...Ch. 36 - What are some of the benefits of performing plasma...Ch. 36 - Describe the relative size of the heat-affected...Ch. 36 - Why might the residual stresses induced during...Ch. 36 - Prob. 84RQCh. 36 - What are typical arc welding currents and...Ch. 36 - What are the attractive features or benefits of an...Ch. 36 - What are jigs, fixtures or positioners, and how...Ch. 36 - Describe thermal deburring.Ch. 36 - When welds fail, it is not uncommon for the...Ch. 36 - For each of the conditions in Problem l, could...Ch. 36 - Using the Internet or technical literature,...Ch. 36 - Using the Internet or technical literature,...Ch. 36 - Identify a new or recent EPA or OSHA regulation...Ch. 36 - Magnesium, while not as strong as steel or...Ch. 36 - Numerous joints appear in bicycle frames, some of...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
How do you find runtime and logic errors in a program?
Starting Out With Visual Basic (8th Edition)
Explain what must be done when fully replicating a database but allowing only one computer to process updates.
Database Concepts (8th Edition)
Using the commands SELECT, PROJECT, and JOIN, write a sequence of instructions to answer each of the following ...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Find the no-load value of υo in the circuit shown.
Find υo when RL is 150 Ω.
How much power is dissipated in th...
Electric Circuits. (11th Edition)
Give a statement that will close the stream toFile created for the previous two questions.
Java: An Introduction to Problem Solving and Programming (8th Edition)
What common programming language statement, in your opinion, is most detrimental to readability?
Concepts Of Programming Languages
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 40%. 60 Su = 66 ksi Stress σ (ksi) S₁ = 39 ksi 40 Se = 36 ksi Hot-rolled 1020 steel 20 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Strain € (%) 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Area ratio R 0.1 0.2 0.3 0.4 0.5 Area reduction A, What value of area ratio is applicable to this location? 0.6arrow_forwardA tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 43%. 60 Su = 66 ksi Stress σ (ksi) 20 Sy = 39 ksi Se = 36 ksi Hot-rolled 1020 steel F 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Strain € (%) 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Area ratio R 0.1 0.2 0.3 0.4 0.5 Area reduction A, What value of area reduction is applicable to this location? 0.6arrow_forwardTable of Measurements and Results: Reading m/s Ji- a (wh Nu h Re Nu Error% (C) (°C) 2 1 Discussion: 1-Estimate the heat transfer and experimental value of the heat transfer coefficient hex with its unit and Nusselt number Nu expl 2- Find the percentage error for the value of the experimental Nusselt number. 3-Draw the graph showing a relationship between the temperatures difference (T-T) and theoretical and experimental value of Nusselt number. 4-The forced convection heat transfer coefficient of a plate depends on which of the following: a-gravity. b-velocity of fluid. e-conductivity of fluid. d-conductivity of plate material. Experiment: Internal Forced convenction Heat trovate on now through t objectives. Study the convection heat transfer of air flow through stage Calculations. Q & (T-T) Vary Re Q. heup A (TT) (T. Te-T ASPL Nep Re 117 RITT 14 ' 14arrow_forward
- If AE = 1.6 m, ED = CD = 1.9 m and F = 3.1 kN, then find the magnitude of the force acting in EB. B 30° 30° C E D ED m DC m ♥F KNarrow_forwardAssume multiple single degree of freedom systems with natural periods T ∈ [0.05, 2.00] seconds with in- crement of period dT = 0.05 seconds. Assume three cases of damping ratio: Case (A) ξ = 0%; Case (B) ξ = 2%; Case (C) ξ = 5%. The systems are initially at rest. Thus, the initial conditions are u(t = 0) = 0 and ̇u(t = 0) = 0. The systems are subjected to the base acceleration that was provided in the ElCentro.txt file (i.e., first column). For the systems in Case (A), Case (B), and Case (C) and for each natural period compute the peak acceleration, peak velocity, and peak displacement responses to the given base excitation. Please, use the Newmark method for β = 1/4 (average acceleration) to compute the responses. Create three plots with three lines in each plot. The first plot will have the peak accelerations in y-axis and the natural period of the system in x-axis. The second plot will have the peak velocities in y-axis and the natural period of the system in x-axis. The third plot…arrow_forwardDetermine the resultant stress at points P and Q.arrow_forward
- For the notched specimen with h = 0.13 m and r =11 mm, calculate the nominal stress for F=5 kN. F h F 25 mm Please submit your answer in the units of MPa.arrow_forwardA tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 49%. 60 Su = 66 ksi Stress σ (ksi) Sy = 39 ksi 400B Se = 36 ksi Hot-rolled 1020 steel 20 F 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Strain € (%) 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Area ratio R 0.1 0.2 0.3 0.4 0.5 Area reduction A, What value of Su is applicable to this location? 0.6arrow_forwardA tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 40%. 60 Su = 66 ksi Stress σ (ksi) 40 20 Sy= = 39 ksi Se = 36 ksi Hot-rolled 1020 steel F | G | H 0 10 20 30 40 50 60 0 70 80 90 100 110 120 130 140 150 160 Strain € (%) ☐ T 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Area ratio R 0.1 0.2 0.3 0.4 0.5 Area reduction A, What value of Sy is applicable to this location? 0.6arrow_forward
- A vertical .2m by .2m square plate is exposed to saturated water vapor at atmospheric pressure. If the surface temperature is 80 degrees C and the flow is laminar, estimate the loal heat transfer coefficents at the middles and at the bottom of the plate.arrow_forwardA transformer that is 10 cm long, 6.2 cm wide, and 5 cm high is to be cooled by attaching a 10 cm by 6.2 cm wide polished aluminum heat sink(emissivity=.03) to its top surface. The heat sink has seven fins, which are 5 mm high, 2mm thick, and 10 cm long. A fan blows air at 25 degrees C parallel to the passages between the fins. The heat sink is to dissipate 12W of heat, and the base temp of the ehat sink is not to exceed 60 degrees C. Assuming the fins and the base plate to be nearly isothermal and the radiation heat transfer to be negligible, determine the minimum free-stream velocity the fan needs to supply to avoid overheating. Assume the flow is laminar over the entire finned surface of the transformer.arrow_forwardI need a mechanical engineering expert to solve this question,no Ai pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY