Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 36, Problem 36PQ

(a)

To determine

The angle at which the third order maximum occur.

(a)

Expert Solution
Check Mark

Answer to Problem 36PQ

The angle at which the third order maximum occur is 43.85°.

Explanation of Solution

Write the expression for mth maxima of diffraction grating.

    dsinθ=mλsinθ=mλdθ=sin1(mλd)                                                                                                        (I)

Here, d is the spacing grating, λ is the wavelength and m is the order.

Conclusion:

Calculate the grating spacing as follows.

    d=13.65×103rulings/cm=2.74×104cm×1m100cm=2.74×106m

Substitute 3 for m, 632.8nm for λ and 2.74×106m for d in equation (I) to calculate θ.

    θ=sin1(3×(632.8nm×1m109nm)2.74×106m)=sin1(0.6928)=43.85°

Therefore, the angle at which the third order maximum occur is 43.85°.

(b)

To determine

The angle at which third order maximum occur if the experiment was carried out underwater.

(b)

Expert Solution
Check Mark

Answer to Problem 36PQ

The angle at which third order maximum occur if the experiment was carried out underwater is 31.34°.

Explanation of Solution

Write the expression to calculate wavelength of light in water.

    λwater=λn                                                                                                                  (II)

Here, λwater is the wavelength of light in water, λ is the wavelength of light in air and n is the refraction index of water.

Write the expression for mth maxima of diffraction grating.

    dsinθ=mλwatersinθ=mλwaterdθ=sin1(mλwaterd)                                                                                                (III)

Here, d is the spacing grating, λwater is the wavelength in water and m is the order.

Conclusion:

Substitute 632.8nm for λ and 1.33 for n in equation (II) to calculate λwater.

    λwater=632.8nm1.33=475.79nm

Substitute 3 for m, 475.79nm for λ and 2.74×106m for d in equation (III) to calculate θ.

    θ=sin1(3×(475.79nm×1m109nm)2.74×106m)=sin1(0.52)=31.34°

Therefore, the angle at which third order maximum occur if the experiment was carried out underwater is 31.34°.

(c)

To determine

The relationship between the diffracted rays from part (a) and part (b).

(c)

Expert Solution
Check Mark

Answer to Problem 36PQ

The relationship between the diffracted rays from part (a) and part (b) is θwater=sin1(mλdn).

Explanation of Solution

Write the expression for mth maxima of diffraction grating.

    dsinθwater=mλwatersinθwater=mλwaterdθwater=sin1(mλwaterd)                                                                                             (IV)

Here, d is the spacing grating, λwater is the wavelength in water and m is the order.

Write the expression for wavelength of light in water.

    λwater=λn

Here, λ is the water and n is the refraction index of water.

Substitute (λn) for λwater in equation (IV) to calculate θwater.

    θwater=sin1(mλdn)

Conclusion:

Therefore, the relationship between the diffracted rays from part (a) and part (b) is θwater=sin1(mλdn).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. a. If a piece of glass (n = 1.5) is coated with a transparent plastic (n = 2.0), will there be a phase shift in either of the beams reflecting off the interfaces (air/plastic and plastic/glass)? How can you tell, without doing the experiment, whether or not there will be a phase shift in either beam? Be specific about what rays are reflecting off what materials. b. So what thickness or thicknesses give the maximum reflection? What thickness or thicknesses (hint: it's thicknesses) give the minimum reflection? Assume that a light of wavelength 500. nm is used, and you may leave the answer in nm. Yes, this is a choice between equations 35.17 and 35.18, but your answer to part a should be helpful in deciding which set.
A hunter at distance of 0.16 km aims to shoot two squirrels sitting 10 cm apart on the same branch of a tree. He claims he can do this without the help of a telescope sight on his rifle. The wavelength of light in a vacuum is 498 nm. Determine the diameter of the pupils of his eyes that would be required to resolve the squirrels as separate objects. O A.2.22 x 10-4 m B.5.32 x 10-4 m OC.6.81 x 10-4 m O D.9.54 x 10-4 m
A laser beam with wavelength λ = 675 nm hits a grating with n = 4750 grooves per centimeter. A. Calculate the grating spacing, d, in centimeters.  B. Find the sin of the angle, θ2, at which the 2nd order maximum will be observed, in terms of d and λ.  C. Calculate the numerical value of θ2 in degrees.

Chapter 36 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 36 - Prob. 6PQCh. 36 - Prob. 7PQCh. 36 - Prob. 8PQCh. 36 - Prob. 9PQCh. 36 - Prob. 10PQCh. 36 - Prob. 11PQCh. 36 - Prob. 12PQCh. 36 - Prob. 13PQCh. 36 - Prob. 14PQCh. 36 - Prob. 15PQCh. 36 - Prob. 16PQCh. 36 - Prob. 17PQCh. 36 - Prob. 18PQCh. 36 - Prob. 19PQCh. 36 - Prob. 20PQCh. 36 - Prob. 21PQCh. 36 - Prob. 22PQCh. 36 - Prob. 23PQCh. 36 - Prob. 24PQCh. 36 - Light of wavelength 566 nm is incident on a...Ch. 36 - Prob. 26PQCh. 36 - Prob. 27PQCh. 36 - Prob. 28PQCh. 36 - Prob. 29PQCh. 36 - Prob. 30PQCh. 36 - A light source emits a mixture of wavelengths from...Ch. 36 - Prob. 32PQCh. 36 - Prob. 33PQCh. 36 - Prob. 34PQCh. 36 - Prob. 35PQCh. 36 - Prob. 36PQCh. 36 - Prob. 37PQCh. 36 - Prob. 38PQCh. 36 - Prob. 39PQCh. 36 - Prob. 40PQCh. 36 - Prob. 41PQCh. 36 - Prob. 42PQCh. 36 - Prob. 43PQCh. 36 - Prob. 44PQCh. 36 - CASE STUDY Michelsons interferometer played an...Ch. 36 - CASE STUDY Michelsons interferometer played an...Ch. 36 - Prob. 47PQCh. 36 - Prob. 48PQCh. 36 - Problems 49 and 50 are paired. C Optical flats are...Ch. 36 - Optical flats are flat pieces of glass used to...Ch. 36 - Prob. 51PQCh. 36 - Prob. 52PQCh. 36 - Figure P36.53 shows two thin glass plates...Ch. 36 - Viewed from above, a thin film of motor oil with...Ch. 36 - Newtons rings, discovered by Isaac Newton, are an...Ch. 36 - Prob. 56PQCh. 36 - What is the radius of the beam of an argon laser...Ch. 36 - Prob. 58PQCh. 36 - A diffraction grating with 428 rulings per...Ch. 36 - How many rulings must a diffraction grating have...Ch. 36 - Prob. 61PQCh. 36 - White light is incident on a diffraction grating...Ch. 36 - X-rays incident on a crystal with planes of atoms...Ch. 36 - Prob. 64PQCh. 36 - Prob. 65PQCh. 36 - Prob. 66PQCh. 36 - The fringe width b is defined as the distance...Ch. 36 - The fringe width is defined as the distance...Ch. 36 - Prob. 69PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY