Concept explainers
Why can we readily observe diffraction effects for sound waves and water waves, but not for light? Is this because light travels so much faster than these other waves? Explain.
The explanation for the diffraction effects can be observed for sound waves and water waves but not for light. Whether this is because light travels so much faster than these other waves.
Explanation of Solution
The light waves have very short wavelength as compare to the wavelength of the sound waves and water waves. Due to this light waves undergo very little diffraction which cannot be observed.
The diffraction of a wave depends on the wavelength of the wave. The larger will be the wavelength the more the diffraction is easily observed because commonly available apertures are of the size of the wavelength of sound waves. As the wavelength of the light is very small, the diffraction in the light is not easily observed because commonly available apertures are not of the size of the wavelength of light waves.
Conclusion:
Therefore, the diffraction effect cannot be observed for light waves because the light carries very shorter wavelength.
Want to see more full solutions like this?
Chapter 36 Solutions
UNIVERSITY PHYSICS UCI PKG
Additional Science Textbook Solutions
The Cosmic Perspective Fundamentals (2nd Edition)
Physics for Scientists and Engineers with Modern Physics
Conceptual Physical Science (6th Edition)
College Physics: A Strategic Approach (4th Edition)
Physics (5th Edition)
University Physics Volume 1
- The movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The other end of the rod is anchored so it does not move. As the temperature of the rod changes from 15°C to 25 C , a change of 14 fringes is observed. The light source is a He Ne laser, =632.8 nm . What is the change in length of the metal bar, and what is its thermal expansion coefficient?arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardTwo closely spaced wavelengths of light are incident on a diffraction grating. (a) Starting with Equation 37.7, show that the angular dispersion of the grating is given by dd=mdcos (b) A square grating 2.00 cm on each side containing 8 000 equally spaced slits is used to analyze the spectrum of mercury. Two closely spaced lines emitted by this element have wavelengths of 579.065 nm and 576.959 nm. What is the angular separation of these two wavelengths in the second-order spectrum?arrow_forward
- Astronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the H line. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is held at a constant temperature. (a) Find the minimum value of d that produces maximum transmission of perpendicular H light if the dielectric has an index of refraction of 1.378. (b) What If? If the temperature of the filter increases above the normal value, increasing its thickness, what happens to the transmitted wavelength? (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light.arrow_forwardIn each of the following situations, a wave passes through an opening in an absorbing wall. Rank the situations in order from the one in which the wave is best described by the ray approximation to the one ill which the wave coming through the opening spreads out most nearly equally in all directions in the hemisphere beyond the wall, (a) The sound of a low whistle at 1 kHz passes through a doorway 1 m wide, (b) Red light passes through the pupil of your eye. (c) Blue light passes through the pupil of your eye. (d) The wave broadcast by an AM radio station passes through a doorway 1 m wide, (e) An x-ray passes through the space between bones in your elbow Joint.arrow_forwardIn Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forward
- Consider a wave passing through a single slit. What happens to the width of the central maximum of its diffraction pattern as the slit is made half as wide? (a) It becomes one-fourth as wide. (b) It becomes one-half as wide. (c) Its width does not change. (d) It becomes twice as wide. (e) It becomes four times as wide.arrow_forwardWhat image will one see if a hologram is recorded using monochromatic light but its image is viewed in white light? Explain.arrow_forwardTwo radio antennas separated by d = 3.00 102 cm. as shown in Figure P24.7, simultaneously broadcast identical signals at the same the signals. (a) If the car is at the position of the second maximum wavelength. A car travels due north along a straight line at position x = 1.00 103 m from the center point between the antennas and its radio receives the signal. (a) If the car is at the position of the second maximum after that at point O when it has traveled a distance of y = 4.00 102 m northward, what is the wavelength of the signals? (b) How much farther must the car travel from thus position to encounter the next minimum in reception? Hint: Do not use the small-angle approximation in this problem.arrow_forward
- Radio telescopes are telescopes used for the detection of radio emission from space. Because radio waves have much longer wavelengths than visible light, the diameter of a radio telescope must be very large to provide good resolution. For example, the radio telescope in Penticton, BC in Canada, has a diameter of 26 m and can be operated at frequencies as high as 6.6 GHz. (a) What is the wavelength corresponding to this frequency? (b) What is the angular separation of two radio sources that can be resolved by this telescope? (c) Compare the telescope’s resolution with the angular size of the moon.arrow_forwardRed light (wavelength 632.8 nm in air) from a Helium-Neon laser is incident on a single slit of width 0.05 mm. The entire apparatus is immersed in water of refractive index 1.333. Determine the angular width of the central peak.arrow_forwardA microwave of an unknown wavelength is incident on a single slit of width 6 cm. The angular width of the central peak is found to be 25°. Find the wavelength.arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning