Figure 35-57 shows an optical fiber in which a central plastic core of index of refraction n 1 = 1.58 is surrounded by a plastic sheath of index of refraction n 2 = 1.53. Light can travel along different paths within the central core, leading to different travel times through the fiber. This causes an initially short pulse of light to spread as it travels along the fiber, resulting in information loss. Consider light that travels directly along the central axis of the fiber and light that is repeatedly reflected at the critical angle along the core–sheath interface, reflecting from side to side as it travels down the central core. If the fiber length is 300 m, what is the difference in the travel times along these two routes? Figure 35-57 Problem 94.
Figure 35-57 shows an optical fiber in which a central plastic core of index of refraction n 1 = 1.58 is surrounded by a plastic sheath of index of refraction n 2 = 1.53. Light can travel along different paths within the central core, leading to different travel times through the fiber. This causes an initially short pulse of light to spread as it travels along the fiber, resulting in information loss. Consider light that travels directly along the central axis of the fiber and light that is repeatedly reflected at the critical angle along the core–sheath interface, reflecting from side to side as it travels down the central core. If the fiber length is 300 m, what is the difference in the travel times along these two routes? Figure 35-57 Problem 94.
Figure 35-57 shows an optical fiber in which a central plastic core of index of refraction n1 = 1.58 is surrounded by a plastic sheath of index of refraction n2 = 1.53. Light can travel along different paths within the central core, leading to different travel times through the fiber. This causes an initially short pulse of light to spread as it travels along the fiber, resulting in information loss. Consider light that travels directly along the central axis of the fiber and light that is repeatedly reflected at the critical angle along the core–sheath interface, reflecting from side to side as it travels down the central core. If the fiber length is 300 m, what is the difference in the travel times along these two routes?
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.