
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 65GP
The wings of a certain beetle have a series of parallel lines across them. When normally incident 480-nm light is reflected from the wing, the wing appears bright when viewed at an angle of 56°. How far apart are the lines?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2. A stone is dropped into a pool of water causing ripple to spread out. After 10 s
the circumference of the ripple is 20 m. Calculate the velocity of the wave.
10. Imagine you have a system in which you have 54 grams of ice. You can melt this
ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly
into a balloon held at a pressure of 0.250 bar. Here are some facts about water you
may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0
C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the
enthalpy of fusion of solid water is 333.55 J/gram.
A. How much energy does the ice absorb as heat when it melts?
B. How much work is involved in melting the ice?
C. What is the total change in energy for melting the ice?
D. What is the enthalpy change for melting the ice?
E. What is the entropy change for melting the ice?
F. What is the change in Helmholtz energy for melting the ice?
G. What is the change in Gibbs energy for melting the ice?
In the figure Q = 5.7 nC and all other quantities are accurate to 2 significant figures. What is the magnitude of the force on the charge Q? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)
Chapter 35 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 35.1 - Single-slit diffraction maximum. Light of...Ch. 35.4 - Green light (550 nm) passes through a...Ch. 35.5 - What is the resolving power of a microscope with a...Ch. 35.10 - Prob. 1DECh. 35.11 - CONCEPTUAL EXAMPLE 3514 Three Polaroids. We saw in...Ch. 35 - Radio waves and light are both electromagnetic...Ch. 35 - Hold one hand close to your eye and focus on a...Ch. 35 - Explain why diffraction patterns are more...Ch. 35 - For diffraction by a single slit, what is the...Ch. 35 - Describe the single-slit diffraction pattern...
Ch. 35 - What happens to the diffraction pattern of a...Ch. 35 - In the single-slit diffraction pattern, why does...Ch. 35 - Discuss the similarities, and differences, of...Ch. 35 - Figure 3510 shows a two-slit interference pattern...Ch. 35 - When both diffraction and interference are taken...Ch. 35 - Does diffraction limit the resolution of images...Ch. 35 - Give at least two advantages for the use of large...Ch. 35 - Atoms have diameters of about 108 cm. Can visible...Ch. 35 - Which color of visible light would give the best...Ch. 35 - Could a diffraction grating just as well be called...Ch. 35 - Suppose light consisting of wavelengths between...Ch. 35 - What is the difference in the interference...Ch. 35 - White light strikes (a) a diffraction grating and...Ch. 35 - Explain why there are tiny peaks between the main...Ch. 35 - What does polarization tell us about the nature of...Ch. 35 - How can you tell if a pair of sunglasses is...Ch. 35 - Prob. 23QCh. 35 - (I) If 680-nm light falls on a slit 0.0365 mm...Ch. 35 - (I) Monochromatic light falls on a slit that is...Ch. 35 - (II) Light of wavelength 580 nm falls on a slit...Ch. 35 - (II) Consider microwaves which are incident...Ch. 35 - (II) If parallel light falls on a single slit of...Ch. 35 - (II) Monochromatic light of wavelength 633 nm...Ch. 35 - (II) If a slit diffracts 580-nm light so that the...Ch. 35 - (II) (a) For a given wavelength , what is the...Ch. 35 - (II) When blue light of wavelength 440 nm falls on...Ch. 35 - (II) A single slit 1.0 mm wide is illuminated by...Ch. 35 - (II) Coherent light from a laser diode is emitted...Ch. 35 - (II) If you double the width of a single slit, the...Ch. 35 - (II) Light of wavelength 750 nm passes through a...Ch. 35 - (II) If a double-slit pattern contains exactly...Ch. 35 - (II) Design a double-slit apparatus so that the...Ch. 35 - (II) 605-nm light passes through a pair of slits...Ch. 35 - (II) Two 0.010-mm-wide slits are 0.030mm apart...Ch. 35 - (II) Suppose d = D in a double-slit apparatus, so...Ch. 35 - (II) In a double-slit experiment, let d = 5.00D =...Ch. 35 - (II) How many fringes are contained in the central...Ch. 35 - (I) What is the angular resolution limit (degrees)...Ch. 35 - (II) Two stars 16 light-years away are barely...Ch. 35 - (II) The nearest neighboring star to the Sun is...Ch. 35 - (II) If you shine a flashlight beam toward the...Ch. 35 - (II) Suppose that you wish to construct a...Ch. 35 - (II) The normal lens on a 35-mm camera has a focal...Ch. 35 - (I) At what angle will 480-nm light produce a...Ch. 35 - (I) A source produces first-order lines when...Ch. 35 - (I) A 3500-line/cm grating produces a third-order...Ch. 35 - (I) A grating has 6800 lines/cm. How many spectral...Ch. 35 - (II) How many lines per centimeter does a grating...Ch. 35 - (II) Red laser light from a He-Ne laser ( = 632.8...Ch. 35 - (II) White light containing wavelengths from 410...Ch. 35 - (II) A diffraction grating has 6.0 l05 lines/m....Ch. 35 - (II) A tungstenhalogen bulb emits a continuous...Ch. 35 - (II) Show that the second- and third-order spectra...Ch. 35 - (II) Two first-order spectrum lines are measured...Ch. 35 - (II) Suppose the angles measured in Problem 40...Ch. 35 - (II) The first-order line of 589-nm light falling...Ch. 35 - Prob. 43PCh. 35 - (II) Missing orders occur for a diffraction...Ch. 35 - (II) A 6500-line/cm diffraction grating is 3.18 cm...Ch. 35 - (II) A diffraction grating has 16,000 rulings in...Ch. 35 - (II) Let 580-nm light be incident normally on a...Ch. 35 - Prob. 49PCh. 35 - (II) First-order Bragg diffraction is observed at...Ch. 35 - Prob. 51PCh. 35 - (I) Two polarizers are oriented at 65 to one...Ch. 35 - (I) Two Polaroids are aligned so that the light...Ch. 35 - (I) What is Brewsters angle for an airglass (n =...Ch. 35 - (I) What is Brewsters angle for a diamond...Ch. 35 - (II) The critical angle for total internal...Ch. 35 - (II) At what angle should the axes of two...Ch. 35 - (II) Two polarizers are oriented at 36.0 to one...Ch. 35 - (II) What would Brewsters angle be for reflections...Ch. 35 - (II) Unpolarized light passes through six...Ch. 35 - (II) Two polarizers A and B are aligned so that...Ch. 35 - (III) The percent polarization P of a partially...Ch. 35 - When violet light of wavelength 415 nm falls on a...Ch. 35 - A series of polarizers are each placed at a 10...Ch. 35 - The wings of a certain beetle have a series of...Ch. 35 - A teacher stands well back from an outside doorway...Ch. 35 - Light is incident on a diffraction grating with...Ch. 35 - How many lines per centimeter must a grating have...Ch. 35 - When yellow sodium light, = 589 nm, falls on a...Ch. 35 - Prob. 70GPCh. 35 - (a) How far away can a human eye distinguish two...Ch. 35 - A laser beam passes through a slit of width 1.0 cm...Ch. 35 - Prob. 73GPCh. 35 - At what angle above the horizon is the Sun when...Ch. 35 - Unpolarized light tails on two polarizer sheets...Ch. 35 - Al what angle should the axes of two Polaroids be...Ch. 35 - Four polarizers are placed in succession with...Ch. 35 - Spy planes fly at extremely high altitudes (25 km)...Ch. 35 - Two polarizers are oriented at 48 to each other...Ch. 35 - Prob. 81GPCh. 35 - The Hubble Space Telescope with an objective...Ch. 35 - The Earth and Moon are separated by about 400 106...Ch. 35 - A slit of width D = 22 m is cut through a thin...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
What terms are used to describe organisms whose growth pH optimum is very high? Very low?
Brock Biology of Microorganisms (15th Edition)
47. A 1000 kg sports car accelerates from 0 to 30m/sin 10 s. What is the average power of the engine?
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Now add a fourth charged particle, particle 3, with positive charge q3, fixed in the yz-plane at (0,d2,d2). What is the net force F→ on particle 0 due solely to this charge? Express your answer (a vector) using k, q0, q3, d2, i^, j^, and k^. Include only the force caused by particle 3.arrow_forwardFor a tornadoes and hurricanes, which of the following is most critical? an alert a watch a warning a predictionarrow_forwardWhen a warm front advances up and over a cold front, what is it called? front inversion stationary front cold front occlusion warm front occlusionarrow_forward
- 1) Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2) Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^. 3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.arrow_forwardA 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 Sarrow_forwardA bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?arrow_forward
- For what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forward
- The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY