
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 70GP
To determine
The angular separation in the first order spectrum for the two wavelengths.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Chapter 35 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 35.1 - Single-slit diffraction maximum. Light of...Ch. 35.4 - Green light (550 nm) passes through a...Ch. 35.5 - What is the resolving power of a microscope with a...Ch. 35.10 - Prob. 1DECh. 35.11 - CONCEPTUAL EXAMPLE 3514 Three Polaroids. We saw in...Ch. 35 - Radio waves and light are both electromagnetic...Ch. 35 - Hold one hand close to your eye and focus on a...Ch. 35 - Explain why diffraction patterns are more...Ch. 35 - For diffraction by a single slit, what is the...Ch. 35 - Describe the single-slit diffraction pattern...
Ch. 35 - What happens to the diffraction pattern of a...Ch. 35 - In the single-slit diffraction pattern, why does...Ch. 35 - Discuss the similarities, and differences, of...Ch. 35 - Figure 3510 shows a two-slit interference pattern...Ch. 35 - When both diffraction and interference are taken...Ch. 35 - Does diffraction limit the resolution of images...Ch. 35 - Give at least two advantages for the use of large...Ch. 35 - Atoms have diameters of about 108 cm. Can visible...Ch. 35 - Which color of visible light would give the best...Ch. 35 - Could a diffraction grating just as well be called...Ch. 35 - Suppose light consisting of wavelengths between...Ch. 35 - What is the difference in the interference...Ch. 35 - White light strikes (a) a diffraction grating and...Ch. 35 - Explain why there are tiny peaks between the main...Ch. 35 - What does polarization tell us about the nature of...Ch. 35 - How can you tell if a pair of sunglasses is...Ch. 35 - Prob. 23QCh. 35 - (I) If 680-nm light falls on a slit 0.0365 mm...Ch. 35 - (I) Monochromatic light falls on a slit that is...Ch. 35 - (II) Light of wavelength 580 nm falls on a slit...Ch. 35 - (II) Consider microwaves which are incident...Ch. 35 - (II) If parallel light falls on a single slit of...Ch. 35 - (II) Monochromatic light of wavelength 633 nm...Ch. 35 - (II) If a slit diffracts 580-nm light so that the...Ch. 35 - (II) (a) For a given wavelength , what is the...Ch. 35 - (II) When blue light of wavelength 440 nm falls on...Ch. 35 - (II) A single slit 1.0 mm wide is illuminated by...Ch. 35 - (II) Coherent light from a laser diode is emitted...Ch. 35 - (II) If you double the width of a single slit, the...Ch. 35 - (II) Light of wavelength 750 nm passes through a...Ch. 35 - (II) If a double-slit pattern contains exactly...Ch. 35 - (II) Design a double-slit apparatus so that the...Ch. 35 - (II) 605-nm light passes through a pair of slits...Ch. 35 - (II) Two 0.010-mm-wide slits are 0.030mm apart...Ch. 35 - (II) Suppose d = D in a double-slit apparatus, so...Ch. 35 - (II) In a double-slit experiment, let d = 5.00D =...Ch. 35 - (II) How many fringes are contained in the central...Ch. 35 - (I) What is the angular resolution limit (degrees)...Ch. 35 - (II) Two stars 16 light-years away are barely...Ch. 35 - (II) The nearest neighboring star to the Sun is...Ch. 35 - (II) If you shine a flashlight beam toward the...Ch. 35 - (II) Suppose that you wish to construct a...Ch. 35 - (II) The normal lens on a 35-mm camera has a focal...Ch. 35 - (I) At what angle will 480-nm light produce a...Ch. 35 - (I) A source produces first-order lines when...Ch. 35 - (I) A 3500-line/cm grating produces a third-order...Ch. 35 - (I) A grating has 6800 lines/cm. How many spectral...Ch. 35 - (II) How many lines per centimeter does a grating...Ch. 35 - (II) Red laser light from a He-Ne laser ( = 632.8...Ch. 35 - (II) White light containing wavelengths from 410...Ch. 35 - (II) A diffraction grating has 6.0 l05 lines/m....Ch. 35 - (II) A tungstenhalogen bulb emits a continuous...Ch. 35 - (II) Show that the second- and third-order spectra...Ch. 35 - (II) Two first-order spectrum lines are measured...Ch. 35 - (II) Suppose the angles measured in Problem 40...Ch. 35 - (II) The first-order line of 589-nm light falling...Ch. 35 - Prob. 43PCh. 35 - (II) Missing orders occur for a diffraction...Ch. 35 - (II) A 6500-line/cm diffraction grating is 3.18 cm...Ch. 35 - (II) A diffraction grating has 16,000 rulings in...Ch. 35 - (II) Let 580-nm light be incident normally on a...Ch. 35 - Prob. 49PCh. 35 - (II) First-order Bragg diffraction is observed at...Ch. 35 - Prob. 51PCh. 35 - (I) Two polarizers are oriented at 65 to one...Ch. 35 - (I) Two Polaroids are aligned so that the light...Ch. 35 - (I) What is Brewsters angle for an airglass (n =...Ch. 35 - (I) What is Brewsters angle for a diamond...Ch. 35 - (II) The critical angle for total internal...Ch. 35 - (II) At what angle should the axes of two...Ch. 35 - (II) Two polarizers are oriented at 36.0 to one...Ch. 35 - (II) What would Brewsters angle be for reflections...Ch. 35 - (II) Unpolarized light passes through six...Ch. 35 - (II) Two polarizers A and B are aligned so that...Ch. 35 - (III) The percent polarization P of a partially...Ch. 35 - When violet light of wavelength 415 nm falls on a...Ch. 35 - A series of polarizers are each placed at a 10...Ch. 35 - The wings of a certain beetle have a series of...Ch. 35 - A teacher stands well back from an outside doorway...Ch. 35 - Light is incident on a diffraction grating with...Ch. 35 - How many lines per centimeter must a grating have...Ch. 35 - When yellow sodium light, = 589 nm, falls on a...Ch. 35 - Prob. 70GPCh. 35 - (a) How far away can a human eye distinguish two...Ch. 35 - A laser beam passes through a slit of width 1.0 cm...Ch. 35 - Prob. 73GPCh. 35 - At what angle above the horizon is the Sun when...Ch. 35 - Unpolarized light tails on two polarizer sheets...Ch. 35 - Al what angle should the axes of two Polaroids be...Ch. 35 - Four polarizers are placed in succession with...Ch. 35 - Spy planes fly at extremely high altitudes (25 km)...Ch. 35 - Two polarizers are oriented at 48 to each other...Ch. 35 - Prob. 81GPCh. 35 - The Hubble Space Telescope with an objective...Ch. 35 - The Earth and Moon are separated by about 400 106...Ch. 35 - A slit of width D = 22 m is cut through a thin...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardAn electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forwardAn ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forward
- A 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forwardA worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forward
- Can someone help mearrow_forward3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning